Cornelian cherry and Prunus cerasus with red pigments possess precious source of flavonoids and phenolic acids which have various applications in treatment of various health problems. This study is conducted to compar...Cornelian cherry and Prunus cerasus with red pigments possess precious source of flavonoids and phenolic acids which have various applications in treatment of various health problems. This study is conducted to compare different methods of extraction (shaking incubator, soxhelet, ultrasonic) were applied in order to identify the best method which shows the highest rate of antioxidant capacity by DPPH and ferric reducing antioxidant power (FRAP) methods and total phenolic compounds via Folin-Ciocalteu procedure, p-coumaric acid content of fruits were evaluated by high performance liquid chromatography (HPLC). As a result, cornelian cherry with 1313.13 mg/Kg average TPC score exhibits higher total phenolic content than Prunus cerasus with 1270 mg/Kg. It’s notice worthy that there was a slight difference among antioxidant activity in two fruits. Consequently, DPPH revealed nearly stronger antioxidant activity for Prunus cerasus while cornelian cherry had a little more potent antioxidant activity according to FRAP Test. p-coumaric acid content was almost twice in Prunus cerasus (10.8 mg/ml) than cornelian cherry (5.6 mg/ml). In addition, both shaking incubator and ultrasonic extraction procedures were more efficient than soxhelet in two fruits.展开更多
This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their ...This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their classification.In addition to extensive morphological descriptions and appropriate asexual and sexual connections,DNA sequence data are also analysed from concatenated datasets(rDNA,TEF-a,RBP2 and b-Tubulin)to infer phylogenetic relationships and substantiate systematic position of taxa within appropriate ranks.Wherever new species or combinations are being proposed,we apply an integrative approach(morphological and molecular data as well as ecological features wherever applicable).Notes on 125 fungal taxa are compiled in this paper,including eight new genera,101 new species,two new combinations,one neotype,four reference specimens,new host or distribution records for eight species and one alternative morphs.The new genera introduced in this paper are Alloarthopyrenia,Arundellina,Camarosporioides,Neomassaria,Neomassarina,Neotruncatella,Paracapsulospora and Pseudophaeosphaeria.The new species are Alfaria spartii,Alloarthopyrenia italica,Anthostomella ravenna,An.thailandica,Arthrinium paraphaeospermum,Arundellina typhae,Aspergillus koreanus,Asterina cynometrae,Bertiella ellipsoidea,Blastophorum aquaticum,Cainia globosa,Camarosporioides phragmitis,Ceramothyrium menglunense,Chaetosphaeronema achilleae,Chlamydotubeufia helicospora,Ciliochorella phanericola,Clavulinopsis aurantiaca,Colletotrichum insertae,Comoclathris italica,Coronophora myricoides,Cortinarius fulvescentoideus,Co.nymphatus,Co.pseudobulliardioides,Co.tenuifulvescens,Cunninghamella gigacellularis,Cyathus pyristriatus,Cytospora cotini,Dematiopleospora alliariae,De.cirsii,Diaporthe aseana,Di.garethjonesii,Distoseptispora multiseptata,Dis.tectonae,Dis.tectonigena,Dothiora buxi,Emericellopsis persica,Gloniopsis calami,Helicoma guttulatum,Helvella floriforma,H.oblongispora,Hermatomyces subiculosa,Juncaceicola italica,Lactarius dirkii,Lentithecium unicellulare,Le.voraginesporum,Leptosphaeria cirsii,Leptosphaeria irregularis,Leptospora galii,Le.thailandica,Lindgomyces pseudomadisonensis,Lophiotrema bambusae,Lo.fallopiae,Meliola citri-maximae,Minimelanolocus submersus,Montagnula cirsii,Mortierella fluviae,Muriphaeosphaeria ambrosiae,Neodidymelliopsis ranunculi,Neomassaria fabacearum,Neomassarina thailandica,Neomicrosphaeropsis cytisi,Neo.cytisinus,Neo.minima,Neopestalotiopsis cocoe¨s,Neopestalotiopsis musae,Neoroussoella lenispora,Neotorula submersa,Neotruncatella endophytica,Nodulosphaeria italica,Occultibambusa aquatica,Oc.chiangraiensis,Ophiocordyceps hemisphaerica,Op.lacrimoidis,Paracapsulospora metroxyli,Pestalotiopsis sequoiae,Peziza fruticosa,Pleurotrema thailandica,Poaceicola arundinis,Polyporus mangshanensis,Pseudocoleophoma typhicola,Pseudodictyosporium thailandica,Pseudophaeosphaeria rubi,Purpureocillium sodanum,Ramariopsis atlantica,Rhodocybe griseoaurantia,Rh.indica,Rh.luteobrunnea,Russula indoalba,Ru.pseudoamoenicolor,Sporidesmium aquaticivaginatum,Sp.olivaceoconidium,Sp.pyriformatum,Stagonospora forlicesenensis,Stagonosporopsis centaureae,Terriera thailandica,Tremateia arundicola,Tr.guiyangensis,Trichomerium bambusae,Tubeufia hyalospora,Tu.roseohelicospora and Wojnowicia italica.New combinations are given for Hermatomyces mirum and Pallidocercospora thailandica.A neotype is proposed for Cortinarius fulvescens.Reference specimens are given for Aquaphila albicans,Leptospora rubella,Platychora ulmi and Meliola pseudosasae,while new host or distribution records are provided for Diaporthe eres,Di.siamensis,Di.foeniculina,Dothiorella iranica,Do.sarmentorum,Do.vidmadera,Helvella tinta and Vaginatispora fuckelii,with full taxonomic details.An asexual state is also reported for the first time in Neoacanthostigma septoconstrictum.This paper contributes to a more comprehensive update and improved identification of many ascomycetes and basiodiomycetes.展开更多
Knowledge of the relationships and thus the classification of fungi,has developed rapidly with increasingly widespread use of molecular techniques,over the past 10–15 years,and continues to accelerate.Several genera ...Knowledge of the relationships and thus the classification of fungi,has developed rapidly with increasingly widespread use of molecular techniques,over the past 10–15 years,and continues to accelerate.Several genera have been found to be polyphyletic,and their generic concepts have subsequently been emended.New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera.The ending of the separate naming of morphs of the same species in 2011,has also caused changes in fungal generic names.In order to facilitate access to all important changes,it was desirable to compile these in a single document.The present article provides a list of generic names of Ascomycota(approximately 6500 accepted names published to the end of 2016),including those which are lichen-forming.Notes and summaries of the changes since the last edition of‘Ainsworth&Bisby’s Dictionary of the Fungi’in 2008 are provided.The notes include the number of accepted species,classification,type species(with location of the type material),culture availability,life-styles,distribution,and selected publications that have appeared since 2008.This work is intended to provide the foundation for updating the ascomycete component of the"Without prejudice list of generic names of Fungi"published in 2013,which will be developed into a list of protected generic names.This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists,and scrutiny by procedures determined by the Nomenclature Committee for Fungi(NCF).The previously invalidly published generic names Barriopsis,Collophora(as Collophorina),Cryomyces,Dematiopleospora,Heterospora(as Heterosporicola),Lithophila,Palmomyces(as Palmaria)and Saxomyces are validated,as are two previously invalid family names,Bartaliniaceae and Wiesneriomycetaceae.Four species of Lalaria,which were invalidly published are transferred to Taphrina and validated as new combinations.Catenomycopsis Tibell&Constant.is reduced under Chaenothecopsis Vain.,while Dichomera Cooke is reduced under Botryosphaeria Ces.&De Not.(Art.59).展开更多
文摘Cornelian cherry and Prunus cerasus with red pigments possess precious source of flavonoids and phenolic acids which have various applications in treatment of various health problems. This study is conducted to compare different methods of extraction (shaking incubator, soxhelet, ultrasonic) were applied in order to identify the best method which shows the highest rate of antioxidant capacity by DPPH and ferric reducing antioxidant power (FRAP) methods and total phenolic compounds via Folin-Ciocalteu procedure, p-coumaric acid content of fruits were evaluated by high performance liquid chromatography (HPLC). As a result, cornelian cherry with 1313.13 mg/Kg average TPC score exhibits higher total phenolic content than Prunus cerasus with 1270 mg/Kg. It’s notice worthy that there was a slight difference among antioxidant activity in two fruits. Consequently, DPPH revealed nearly stronger antioxidant activity for Prunus cerasus while cornelian cherry had a little more potent antioxidant activity according to FRAP Test. p-coumaric acid content was almost twice in Prunus cerasus (10.8 mg/ml) than cornelian cherry (5.6 mg/ml). In addition, both shaking incubator and ultrasonic extraction procedures were more efficient than soxhelet in two fruits.
基金K.D.Hyde would like to thank the Thailand Research Fund grant no RSA5980068 entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans and the Chinese Academy of Sciences,Project Number 2013T2S0030,for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany.Financial support by the German Academic Exchange Service(DAAD)and the Thai Royal Golden Ph.D.Jubilee-Industry program(RGJ)for a joint TRF-DAAD PPP(2012-2014)academic exchange grant to K.D.Hyde and M.Stadler,and the RGJ for a personal grant to B.Thongbai(No.Ph.D/0138/2553 in 4.S.MF/53/A.3)is gratefully acknowledged.Chayanard Phukhamsakda(PHD/0020/2557)acknowledges the The Royal Golden Jubilee Ph.D.Program under the Thailand Research Fund.Mingkwan Doilom acknowledges the Royal Golden Jubilee Ph.D.Program(PHD./0072/2553 in 4.S.M.F./53/A.2)under the Thailand Research Fund.Ausana Mapook is grateful to Research and Researchers for Industries(RRI)PHD57I0012.Rungtiwa Phookamsak sincerely appreciates The Royal Golden Jubilee Ph.D.Program(PHD/0090/2551 in 4.S.MF/51/A.1)under the Thailand Research Fund for financial support.Qi Zhao thanks the National Natural Science Foundation of China(No.31360015)the CAS/SAFEA International Partnership Program for Creative Research Teams,and the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KSCX2-EW-Z-9 and KIB2016002)+11 种基金KNAR acknowledges support from the University Grants Commission(UGC),India,in the form of a Rajiv Gandhi National Fellowship(Grant No.F.14-2(SC)/2009(SA-III)(and the permissions given to him for collecting agaric specimens from the forests of Kerala by the Principal Chief Conservator of Forests,Government of Kerala(WL12-4042/2009 dated 05-08-2009)This Project was funded by the National Plan for Science,Technology and Innovation(MAARIFAH),King Abdulaziz City for Science and Technology,Kingdom of Saudi Arabia,Award Number(12-BIO2840-02)B.K.Cui thanked for the finance by the Fundamental Research Funds for the Central Universities(No.2016ZCQ04)and the National Natural Science Foundation of China(Project No.31422001)We would like to thank Dr.Marcela E.S.Cáceres for translating the German description of Clavulinopsis,the Conselho Nacional de Desenvolvimento Cientí-fico(CNPq)for the master scholarship of LSAN,the PósGraduac¸ǎo em Biologia de Fungos(UFPE,Brazil),CNPq(Protax 562106/2010-3,Sisbiota 563342/2010-2,Universal 472792/2011-3)FACEPE(APQ-0788-2.03/12)for financing this research.H.B.Lee was supported by the Graduate Program for the Undiscovered Taxa of Korea,and by the Project on Survey and Discovery of Indigenous Fungal Species of Korea,funded by NIBR and NNIBR of the Ministry of Environment(MOE),and in part by a fund from National Institute of Animal Science under Rural Development Administration,Republic of Korea.Aniket Ghosh,Priyanka Uniyal and R.P.Bhatt are grateful to the Head,Department of Botany&Microbiology,HNB Garhwal University,Srinagar Garhwal for providing all kinds of facilities during the present study.Kanad Das and Abhishek Baghela are thankful to the Director,Botanical Survey of India,Kolkata and Director,MACS’Agharkar Research Institute,Pune respectively for providing facilities.UGC provided fellowship to Aniket Ghosh and Priyanka Unial.Field assistance rendered by Mr.Tahir Mehmood and Mr.Upendra Singh(HNBGU)are also duly acknowledged.Tuula Niskanen,Kare Liimatainen,Ilkka Kytövuori,Joe Ammirati,Ba´lint Dima,and Dimitar Bojantchev would like to acknowledge Heino Vänskäfor the help with nomenclature.We are grateful to the curators of H and S.This work was partially supported by the Ministry of Environment,Finland(YM38/5512/2009)and OskarÖflunds Stiftelse.The authors thanks Dr.Kerstin Voigt for the inestimable help in critical reviewing the lower fungi entries,the Coordenac¸ǎo de Aperfeic¸oamento de Pessoal de Nı´vel Superior(CAPES)and Fundac¸ǎo de AmparoàCiência e Tecnologia do Estado de Pernambuco(FACEPE)for the postgraduate scholarships to Diogo X.Lima and Carlos A.F.de Souza,respectively.We also thank Conselho Nacional de Desenvolvimento Científico e Tecnológico(CNPq)and FACEPE for financial support through the projects:‘Mucoromycotina in upland forests from the semi-arid of Pernambuco’(CNPq-458391/2014-0),and‘Diversity of Mucoromycotina in different ecosystems of the Pernambuco’s Atlantic Rainforest’(FACEPE-APQ 0842-2.12/14).Z.L Luo and H.Y Su would like to thank the National Natural Science Foundation of China(Project ID:31460015)for financial support on Study of the distribution pattern and driving factors of aquatic fungal diversity in the region of Three Parallel Rivers.C.Phukhamsakda would like to thank Dr.Matthew P.Nelsen for his valuable suggestions.Saranyaphat Boonmee thanks to the Thailand Research Fund,project number TRG5880152 and Mae Fah Luang University for a Grant Number 2559A30702006C.G.Lin and Y.Wang thank for the finance by the National Natural Science Foundation of China(No.NSFC 31560489)Fundamental Research on Science and Technology,Ministry of Science and Technology of China(2014FY120100)Haixia Wu would like to thank Dr.Shaun Pennycook for his kindly nomenclatural review and thanked for the finance by the National Natural Science Foundation of China(Project No.31300019)S.C.Karunarathna,P.E.Mortimer and J.C.Xu would like to thank the World Agroforestry Centre,East and Central Asia OfficeKey Laboratory for Plant Diversity and Biogeography of East Asia,Kunming Institute of Botany,Chinese Academy of Sciencethe ChineseMinistry of Science and Technology,under the 12th 5-year National Key Technology Support Program(NKTSP)2013 BAB07B06 integration and comprehensive demonstration of key technologies on Green Phosphate-mountaion Construction and the CGIAR Research Program 6:Forest,Trees and Agroforestry for partial funding.The National Research Council of Thailand(NRCT),projects-Taxonomy,phylogeny and cultivation of Lentinus species in northern Thailand(NRCT/55201020007)is also thanked.K.Tanaka and A.Hashimoto would like to thank the Japan Society for the Promotion of Science(JSPS,26291084,16K07474,16J07243).
文摘This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their classification.In addition to extensive morphological descriptions and appropriate asexual and sexual connections,DNA sequence data are also analysed from concatenated datasets(rDNA,TEF-a,RBP2 and b-Tubulin)to infer phylogenetic relationships and substantiate systematic position of taxa within appropriate ranks.Wherever new species or combinations are being proposed,we apply an integrative approach(morphological and molecular data as well as ecological features wherever applicable).Notes on 125 fungal taxa are compiled in this paper,including eight new genera,101 new species,two new combinations,one neotype,four reference specimens,new host or distribution records for eight species and one alternative morphs.The new genera introduced in this paper are Alloarthopyrenia,Arundellina,Camarosporioides,Neomassaria,Neomassarina,Neotruncatella,Paracapsulospora and Pseudophaeosphaeria.The new species are Alfaria spartii,Alloarthopyrenia italica,Anthostomella ravenna,An.thailandica,Arthrinium paraphaeospermum,Arundellina typhae,Aspergillus koreanus,Asterina cynometrae,Bertiella ellipsoidea,Blastophorum aquaticum,Cainia globosa,Camarosporioides phragmitis,Ceramothyrium menglunense,Chaetosphaeronema achilleae,Chlamydotubeufia helicospora,Ciliochorella phanericola,Clavulinopsis aurantiaca,Colletotrichum insertae,Comoclathris italica,Coronophora myricoides,Cortinarius fulvescentoideus,Co.nymphatus,Co.pseudobulliardioides,Co.tenuifulvescens,Cunninghamella gigacellularis,Cyathus pyristriatus,Cytospora cotini,Dematiopleospora alliariae,De.cirsii,Diaporthe aseana,Di.garethjonesii,Distoseptispora multiseptata,Dis.tectonae,Dis.tectonigena,Dothiora buxi,Emericellopsis persica,Gloniopsis calami,Helicoma guttulatum,Helvella floriforma,H.oblongispora,Hermatomyces subiculosa,Juncaceicola italica,Lactarius dirkii,Lentithecium unicellulare,Le.voraginesporum,Leptosphaeria cirsii,Leptosphaeria irregularis,Leptospora galii,Le.thailandica,Lindgomyces pseudomadisonensis,Lophiotrema bambusae,Lo.fallopiae,Meliola citri-maximae,Minimelanolocus submersus,Montagnula cirsii,Mortierella fluviae,Muriphaeosphaeria ambrosiae,Neodidymelliopsis ranunculi,Neomassaria fabacearum,Neomassarina thailandica,Neomicrosphaeropsis cytisi,Neo.cytisinus,Neo.minima,Neopestalotiopsis cocoe¨s,Neopestalotiopsis musae,Neoroussoella lenispora,Neotorula submersa,Neotruncatella endophytica,Nodulosphaeria italica,Occultibambusa aquatica,Oc.chiangraiensis,Ophiocordyceps hemisphaerica,Op.lacrimoidis,Paracapsulospora metroxyli,Pestalotiopsis sequoiae,Peziza fruticosa,Pleurotrema thailandica,Poaceicola arundinis,Polyporus mangshanensis,Pseudocoleophoma typhicola,Pseudodictyosporium thailandica,Pseudophaeosphaeria rubi,Purpureocillium sodanum,Ramariopsis atlantica,Rhodocybe griseoaurantia,Rh.indica,Rh.luteobrunnea,Russula indoalba,Ru.pseudoamoenicolor,Sporidesmium aquaticivaginatum,Sp.olivaceoconidium,Sp.pyriformatum,Stagonospora forlicesenensis,Stagonosporopsis centaureae,Terriera thailandica,Tremateia arundicola,Tr.guiyangensis,Trichomerium bambusae,Tubeufia hyalospora,Tu.roseohelicospora and Wojnowicia italica.New combinations are given for Hermatomyces mirum and Pallidocercospora thailandica.A neotype is proposed for Cortinarius fulvescens.Reference specimens are given for Aquaphila albicans,Leptospora rubella,Platychora ulmi and Meliola pseudosasae,while new host or distribution records are provided for Diaporthe eres,Di.siamensis,Di.foeniculina,Dothiorella iranica,Do.sarmentorum,Do.vidmadera,Helvella tinta and Vaginatispora fuckelii,with full taxonomic details.An asexual state is also reported for the first time in Neoacanthostigma septoconstrictum.This paper contributes to a more comprehensive update and improved identification of many ascomycetes and basiodiomycetes.
基金Acknowledgements Nalin Wijayawardene would like to thank Lechat Christian,Yuanpin Xiao,Danushka Sandaruwan,Paul Mungai,Huang Zhang,Ishani Goonasekara,Chada Norphanphoun,Ishara Manawasingha,Rajesh Jeewon,Thilini Chethana and Hasini Ekanayaka for their assistances and suggestions.We would like to thank Mark Stadler for his help to check names in Xylariales.Nalin Wijayawardene and Pedro Crous thank Ulrike Damm for her comments and suggestions for validating several names.K.D.Hyde thanks The Chinese Academy of Sciences,for the award of Visiting Professorship for Senior International Scientists at Kunming Institute of Botany.K.D.Hyde and Monika C.Dayarathne would like to thank the Thailand Research Fund(TRF)grant no RSA5980068 entitled Biodiversity,phylogeny and role of fungal endophytes on above parts of Rhizophora apiculata and Nypa fruticans,National Research Council of Thailand(NRCT)entitled Diseases of mangrove trees and maintenance of good forestry practice(Grant number:60201000201)Mae Fah Luang University grant"Biodiversity,phylogeny and role of fungal endophytes of Pandanaceae"(Grant number:592010200112)+9 种基金Hugo Madrid was funded by Comisio´n Nacional de Investigacio´n Cientı´fica y Tecnolo´gica(CONICYT)Fondo Nacional de Desarrollo Cientı´fico y Tecnolo´gico(FONDECYT),Chile,project no.11140562."Rafael F.Castan˜eda-Ruiz is grateful to the Organizacio´n Superior de Direccio´n Empresarial,Grupo Agrı´cola,(OSDE)from the Cuban Ministry of Agriculture and"Programa de Salud Animal y Vegetal",project P131LH003033.Dong Qin Dai would like to thank the Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and plants on Yun-Gui Plateau for the support.Ka-Lai Pang thanks Ministry of Science and Technology,Taiwan for financial support(105-2621-B-019-002-)Guo Zhu Zhao was funded by the National Natural Science Foundation of China(No.31570019)Mingkwan Doilom acknowledges the Royal Golden Jubilee Ph.D.Program(PHD./0072/2553 in 4.S.M.F./53/A.2.K.Tanaka would like to thank the Japan Society for the Promotion of Science(JSPS26291084 and 16K07474)Walter P.Pfliegler was supported through the U´NKP-16-4-IV New National Excellence Program of the Hungarian Ministry of Human Capacities.Samantha C.Karunarathna thanks Yunnan Provincial Department of Human Resources and Social Security funded postdoctoral project(number 179122)for supporting his postdoctoral research study.The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP#0089.KC Rajeshkumar thanks SERB,DST,Government of India for providing financial support under the project YSS/2015/001590Dr.K.M.Paknikar,Director,ARI for providing the facility.Mats Wedin thanks the Swedish Research Council,grants VR 621-2012-3990VR 2016-03589.Alan JL Phillips acknowledges the support from Biosystems and Integrative Sciences Institute(BioISI,FCT/UID/Multi/04046/2013)L.Selbmann,L.Zucconi and S.Onofri thank the Italian National Program for Antarctic Researches(PNRA)for the financial support.The Italian National Antarctic Museum(MNA)is acknowledged for supporting the Mycological Section and the Culture Collection of Fungi from Extreme Environments(CCFEE).
文摘Knowledge of the relationships and thus the classification of fungi,has developed rapidly with increasingly widespread use of molecular techniques,over the past 10–15 years,and continues to accelerate.Several genera have been found to be polyphyletic,and their generic concepts have subsequently been emended.New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera.The ending of the separate naming of morphs of the same species in 2011,has also caused changes in fungal generic names.In order to facilitate access to all important changes,it was desirable to compile these in a single document.The present article provides a list of generic names of Ascomycota(approximately 6500 accepted names published to the end of 2016),including those which are lichen-forming.Notes and summaries of the changes since the last edition of‘Ainsworth&Bisby’s Dictionary of the Fungi’in 2008 are provided.The notes include the number of accepted species,classification,type species(with location of the type material),culture availability,life-styles,distribution,and selected publications that have appeared since 2008.This work is intended to provide the foundation for updating the ascomycete component of the"Without prejudice list of generic names of Fungi"published in 2013,which will be developed into a list of protected generic names.This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists,and scrutiny by procedures determined by the Nomenclature Committee for Fungi(NCF).The previously invalidly published generic names Barriopsis,Collophora(as Collophorina),Cryomyces,Dematiopleospora,Heterospora(as Heterosporicola),Lithophila,Palmomyces(as Palmaria)and Saxomyces are validated,as are two previously invalid family names,Bartaliniaceae and Wiesneriomycetaceae.Four species of Lalaria,which were invalidly published are transferred to Taphrina and validated as new combinations.Catenomycopsis Tibell&Constant.is reduced under Chaenothecopsis Vain.,while Dichomera Cooke is reduced under Botryosphaeria Ces.&De Not.(Art.59).