In this work,three cytosine derived nitrogen doped carbonaceous materials(noble carbons,NCs)with different atomic C/N ratios and porous networks have been synthesized and used as supports for Pt Ru electrocatalysts in...In this work,three cytosine derived nitrogen doped carbonaceous materials(noble carbons,NCs)with different atomic C/N ratios and porous networks have been synthesized and used as supports for Pt Ru electrocatalysts in the ethanol oxidation reaction(EOR)for clean hydrogen production.Both,the metal phase and the carbon support play critical roles in the electrocatalysts final performance.Lower NPs size distribution was obtained over supports with low atomic C/N ratios(i.e.,4 and 6)and defined porosity(i.e.,1701 m^(2)g^(-1)for Pt Ru/CNZ and 1834 m^(2)g^(-1)for Pt Ru/CLZ,respectively).In contrast,a lower C/N ratio and poor porous network(i.e.,65 m^(2)g^(-1),Pt Ru/CLK)led to the largest particle size and fostered an increase of the alloying degree between Pt and Ru NPs(i.e.,3%for C/N~6 and 28%for C/N~3).Electrochemical active surface area was found to increase with decreasing NPs size and the alloy extent,due to a higher availability of Pt active sites.Accelerated degradation tests showed that Pt Ru/NCs outperform similar to Pt Ru NPs on commercial carbon pointing at the stabilizing effect of NCs.Pt Ru/CNZ exhibited the best electrochemical performance(i.e.,69.1 m A mgPt-1),outperforming Pt Ru/CLZ and Pt Ru/CLK by3-and 9-fold,respectively,due to a suitable compromise between particle sizes,degree of alloy,textural properties and elemental composition.Best anodes were scaled-up to a proton exchange membrane cell and Pt Ru/CNZ was proved to provide the best electrocatalytic activity(262 m A cm^(-2)and low energy requirements),matching the values obtained by the state of the art of EOR electrocatalysts.展开更多
基金the Spanish Ministry of Science and Innovation(State Research Agency.Project PID2019-107499RB100)for the financial supportThe Max Planck Society。
文摘In this work,three cytosine derived nitrogen doped carbonaceous materials(noble carbons,NCs)with different atomic C/N ratios and porous networks have been synthesized and used as supports for Pt Ru electrocatalysts in the ethanol oxidation reaction(EOR)for clean hydrogen production.Both,the metal phase and the carbon support play critical roles in the electrocatalysts final performance.Lower NPs size distribution was obtained over supports with low atomic C/N ratios(i.e.,4 and 6)and defined porosity(i.e.,1701 m^(2)g^(-1)for Pt Ru/CNZ and 1834 m^(2)g^(-1)for Pt Ru/CLZ,respectively).In contrast,a lower C/N ratio and poor porous network(i.e.,65 m^(2)g^(-1),Pt Ru/CLK)led to the largest particle size and fostered an increase of the alloying degree between Pt and Ru NPs(i.e.,3%for C/N~6 and 28%for C/N~3).Electrochemical active surface area was found to increase with decreasing NPs size and the alloy extent,due to a higher availability of Pt active sites.Accelerated degradation tests showed that Pt Ru/NCs outperform similar to Pt Ru NPs on commercial carbon pointing at the stabilizing effect of NCs.Pt Ru/CNZ exhibited the best electrochemical performance(i.e.,69.1 m A mgPt-1),outperforming Pt Ru/CLZ and Pt Ru/CLK by3-and 9-fold,respectively,due to a suitable compromise between particle sizes,degree of alloy,textural properties and elemental composition.Best anodes were scaled-up to a proton exchange membrane cell and Pt Ru/CNZ was proved to provide the best electrocatalytic activity(262 m A cm^(-2)and low energy requirements),matching the values obtained by the state of the art of EOR electrocatalysts.