期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Benzene selective hydrogenation over supported Ni(nano-) particles catalysts: Catalytic and kinetics studies
1
作者 M.H.Peyrovi N.Parsafard Z.Mohammadian 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期521-528,共8页
This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS... This report aims to reduce the benzene in a mixture of benzene and toluene as a model reaction using catalytic hydrogenation. In this research, we developed a series of catalysts with different supports such as Ni/HMS, Ni/HZSM-5, Ni/HZSM5-HMS, Ni/Al2O3 and Ni/SiO2. Kinetic of this reaction was investigated under various hydrogen and benzene pressures. For more study, two kinetic models have also been selected and tested to describe the kinetics for this reaction. Both used models, the power law and Langmuir-Hinshelwood, provided a good fit toward the experimental data and allowed to determine the kinetic parameters. Among these catalysts, Ni/Al2O3 showed the maximum benzene conversion (99.19%) at 130℃ for benzene hydrogenation. The lowest toluene conversion was observed for Ni/SiO2. Furthermore, this catalyst presented high selectivity to benzene (75.26%) at 130℃. The catalytic performance (activity, selectivity and stability) and kinetics evaluations were shown that the Ni/SiO2 is an effective catalyst to hydrogenate benzene. It seems that the surface properties particularly pore size are effective parameter compared to other factors such as acidity and metal dispersion in this process. 展开更多
关键词 Catalytic hydrogenation Power law model Langmuir-Hinshelwood mode Selectivity Kinetics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部