期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
Facial Image-Based Autism Detection:A Comparative Study of Deep Neural Network Classifiers
1
作者 Tayyaba Farhat Sheeraz Akram +3 位作者 Hatoon SAlSagri Zulfiqar Ali Awais Ahmad Arfan Jaffar 《Computers, Materials & Continua》 SCIE EI 2024年第1期105-126,共22页
Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particula... Autism Spectrum Disorder(ASD)is a neurodevelopmental condition characterized by significant challenges in social interaction,communication,and repetitive behaviors.Timely and precise ASD detection is crucial,particularly in regions with limited diagnostic resources like Pakistan.This study aims to conduct an extensive comparative analysis of various machine learning classifiers for ASD detection using facial images to identify an accurate and cost-effective solution tailored to the local context.The research involves experimentation with VGG16 and MobileNet models,exploring different batch sizes,optimizers,and learning rate schedulers.In addition,the“Orange”machine learning tool is employed to evaluate classifier performance and automated image processing capabilities are utilized within the tool.The findings unequivocally establish VGG16 as the most effective classifier with a 5-fold cross-validation approach.Specifically,VGG16,with a batch size of 2 and the Adam optimizer,trained for 100 epochs,achieves a remarkable validation accuracy of 99% and a testing accuracy of 87%.Furthermore,the model achieves an F1 score of 88%,precision of 85%,and recall of 90% on test images.To validate the practical applicability of the VGG16 model with 5-fold cross-validation,the study conducts further testing on a dataset sourced fromautism centers in Pakistan,resulting in an accuracy rate of 85%.This reaffirms the model’s suitability for real-world ASD detection.This research offers valuable insights into classifier performance,emphasizing the potential of machine learning to deliver precise and accessible ASD diagnoses via facial image analysis. 展开更多
关键词 AUTISM Autism Spectrum Disorder(ASD) disease segmentation features optimization deep learning models facial images classification
下载PDF
A Hybrid Model for Improving Software Cost Estimation in Global Software Development
2
作者 Mehmood Ahmed Noraini B.Ibrahim +4 位作者 Wasif Nisar Adeel Ahmed Muhammad Junaid Emmanuel Soriano Flores Divya Anand 《Computers, Materials & Continua》 SCIE EI 2024年第1期1399-1422,共24页
Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely h... Accurate software cost estimation in Global Software Development(GSD)remains challenging due to reliance on historical data and expert judgments.Traditional models,such as the Constructive Cost Model(COCOMO II),rely heavily on historical and accurate data.In addition,expert judgment is required to set many input parameters,which can introduce subjectivity and variability in the estimation process.Consequently,there is a need to improve the current GSD models to mitigate reliance on historical data,subjectivity in expert judgment,inadequate consideration of GSD-based cost drivers and limited integration of modern technologies with cost overruns.This study introduces a novel hybrid model that synergizes the COCOMO II with Artificial Neural Networks(ANN)to address these challenges.The proposed hybrid model integrates additional GSD-based cost drivers identified through a systematic literature review and further vetted by industry experts.This article compares the effectiveness of the proposedmodelwith state-of-the-artmachine learning-basedmodels for software cost estimation.Evaluating the NASA 93 dataset by adopting twenty-six GSD-based cost drivers reveals that our hybrid model achieves superior accuracy,outperforming existing state-of-the-artmodels.The findings indicate the potential of combining COCOMO II,ANN,and additional GSD-based cost drivers to transform cost estimation in GSD. 展开更多
关键词 Artificial neural networks COCOMO II cost drivers global software development linear regression software cost estimation
下载PDF
Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow
3
作者 Baydaa Abdul Kareem Salah L.Zubaidi +1 位作者 Nadhir Al-Ansari Yousif Raad Muhsen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期1-41,共41页
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques... Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms. 展开更多
关键词 Univariate streamflow machine learning hybrid model data pre-processing performance metrics
下载PDF
Mitigating Urban Heat Island Effects: A Review of Innovative Pavement Technologies and Integrated Solutions
4
作者 S.F.Ismael A.H.Alias +2 位作者 N.A.Haron B.B.Zaidan Abdulrahman M.Abdulghani 《Structural Durability & Health Monitoring》 EI 2024年第5期525-551,共27页
In this review paper,we present a thorough investigation into the role of pavement technologies in advancing urban sustainability.Our analysis traverses the historical evolution of these technologies,meticulously eval... In this review paper,we present a thorough investigation into the role of pavement technologies in advancing urban sustainability.Our analysis traverses the historical evolution of these technologies,meticulously evaluating their socio-economic and environmental impacts,with a particular emphasis on their role in mitigating the urban heat island effect.The evaluation of pavement types and variables influencing pavement performance to be used in the multi-criteria decision-making(MCDM)framework to choose the optimal pavement application are at the heart of our research.Which serves to assess a spectrum of pavement options,revealing insights into the most effective and sustainable practices.By highlighting both the existing challenges and potential innovative solutions within thefield,this paper aims to offer a directional compass for future urban planning and infrastructural advancements.This review not only synthesizes the current state of knowledge but also aims to chart a course for future exploration,emphasizing the critical need for innovative and environmentally sensitive pavement tech-nologies in the creation of resilient and sustainable urban environments. 展开更多
关键词 Pavement sustainability urban heat island environmental impact of pavements innovative pavement solutions economic and social implications sustainable development in urban areas
下载PDF
Robust Machine Learning Technique to Classify COVID-19 Using Fusion of Texture and Vesselness of X-Ray Images
5
作者 Shaik Mahaboob Basha Victor Hugo Cde Albuquerque +3 位作者 Samia Allaoua Chelloug Mohamed Abd Elaziz Shaik Hashmitha Mohisin Suhail Parvaze Pathan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1981-2004,共24页
Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image a... Manual investigation of chest radiography(CXR)images by physicians is crucial for effective decision-making in COVID-19 diagnosis.However,the high demand during the pandemic necessitates auxiliary help through image analysis and machine learning techniques.This study presents a multi-threshold-based segmentation technique to probe high pixel intensity regions in CXR images of various pathologies,including normal cases.Texture information is extracted using gray co-occurrence matrix(GLCM)-based features,while vessel-like features are obtained using Frangi,Sato,and Meijering filters.Machine learning models employing Decision Tree(DT)and RandomForest(RF)approaches are designed to categorize CXR images into common lung infections,lung opacity(LO),COVID-19,and viral pneumonia(VP).The results demonstrate that the fusion of texture and vesselbased features provides an effective ML model for aiding diagnosis.The ML model validation using performance measures,including an accuracy of approximately 91.8%with an RF-based classifier,supports the usefulness of the feature set and classifier model in categorizing the four different pathologies.Furthermore,the study investigates the importance of the devised features in identifying the underlying pathology and incorporates histogrambased analysis.This analysis reveals varying natural pixel distributions in CXR images belonging to the normal,COVID-19,LO,and VP groups,motivating the incorporation of additional features such as mean,standard deviation,skewness,and percentile based on the filtered images.Notably,the study achieves a considerable improvement in categorizing COVID-19 from LO,with a true positive rate of 97%,further substantiating the effectiveness of the methodology implemented. 展开更多
关键词 Chest radiography(CXR)image COVID-19 CLASSIFIER machine learning random forest texture analysis
下载PDF
Automatic recognition of depression based on audio and video:A review
6
作者 Meng-Meng Han Xing-Yun Li +4 位作者 Xin-Yu Yi Yun-Shao Zheng Wei-Li Xia Ya-Fei Liu Qing-Xiang Wang 《World Journal of Psychiatry》 SCIE 2024年第2期225-233,共9页
Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary mea... Depression is a common mental health disorder.With current depression detection methods,specialized physicians often engage in conversations and physiological examinations based on standardized scales as auxiliary measures for depression assessment.Non-biological markers-typically classified as verbal or non-verbal and deemed crucial evaluation criteria for depression-have not been effectively utilized.Specialized physicians usually require extensive training and experience to capture changes in these features.Advancements in deep learning technology have provided technical support for capturing non-biological markers.Several researchers have proposed automatic depression estimation(ADE)systems based on sounds and videos to assist physicians in capturing these features and conducting depression screening.This article summarizes commonly used public datasets and recent research on audio-and video-based ADE based on three perspectives:Datasets,deficiencies in existing research,and future development directions. 展开更多
关键词 Depression recognition Deep learning Automatic depression estimation System Audio processing Image processing Feature fusion Future development
下载PDF
OffSig-SinGAN: A Deep Learning-Based Image Augmentation Model for Offline Signature Verification 被引量:1
7
作者 M.Muzaffar Hameed Rodina Ahmad +2 位作者 Laiha Mat Kiah Ghulam Murtaza Noman Mazhar 《Computers, Materials & Continua》 SCIE EI 2023年第7期1267-1289,共23页
Offline signature verification(OfSV)is essential in preventing the falsification of documents.Deep learning(DL)based OfSVs require a high number of signature images to attain acceptable performance.However,a limited n... Offline signature verification(OfSV)is essential in preventing the falsification of documents.Deep learning(DL)based OfSVs require a high number of signature images to attain acceptable performance.However,a limited number of signature samples are available to train these models in a real-world scenario.Several researchers have proposed models to augment new signature images by applying various transformations.Others,on the other hand,have used human neuromotor and cognitive-inspired augmentation models to address the demand for more signature samples.Hence,augmenting a sufficient number of signatures with variations is still a challenging task.This study proposed OffSig-SinGAN:a deep learning-based image augmentation model to address the limited number of signatures problem on offline signature verification.The proposed model is capable of augmenting better quality signatures with diversity from a single signature image only.It is empirically evaluated on widely used public datasets;GPDSsyntheticSignature.The quality of augmented signature images is assessed using four metrics like pixel-by-pixel difference,peak signal-to-noise ratio(PSNR),structural similarity index measure(SSIM),and frechet inception distance(FID).Furthermore,various experiments were organised to evaluate the proposed image augmentation model’s performance on selected DL-based OfSV systems and to prove whether it helped to improve the verification accuracy rate.Experiment results showed that the proposed augmentation model performed better on the GPDSsyntheticSignature dataset than other augmentation methods.The improved verification accuracy rate of the selected DL-based OfSV system proved the effectiveness of the proposed augmentation model. 展开更多
关键词 Signature forgery detection offline signature verification deep learning image augmentation generative adversarial networks
下载PDF
Statistical Reasoning of High School Teachers in a Computer Environment of Dynamic Data Exploration
8
作者 Santiago Inzunsa Cazares Jose Alfredo Juarez Duarte 《Journal of Mathematics and System Science》 2012年第2期133-138,共6页
Results of a research about statistical reasoning that six high school teachers developed in a computer environment are presented in this article. A sequence of three activities with the support of software Fathom was... Results of a research about statistical reasoning that six high school teachers developed in a computer environment are presented in this article. A sequence of three activities with the support of software Fathom was presented to the teachers in a course to investigate about the reasoning that teachers develop about the data analysis, particularly about the distribution concept, that involves important concepts such as averages, variability and graphics representations. The design of the activities was planned so that the teachers analyzed quantitative variables separately first, and later made an analysis of a qualitative variable versus a quantitative variable with the objective of establishing comparisons between distributions and use concepts as averages, variability, shape and outliers. The instructions in each activity indicated to the teachers to use all the resources of the software that were necessary to make the complete analysis and respond to certain questions that pretended to capture the type of representations they used to answer. The results indicate that despite the abundance of representations provided by the software, teachers focu,; on the calculation of averages to describe and compare distributions, rather than on the important properties of data such as variability, :shape and outliers. Many teachers were able to build interesting graphs reflecting important properties of the data, but cannot use them 1:o support data analysis. Hence, it is necessary to extend the teachers' understanding on data analysis so they can take advantage of the cognitive potential that computer tools to offer. 展开更多
关键词 Statistical reasoning data analysis computer environment to teaching
下载PDF
Classification of Electroencephalogram Signals Using LSTM and SVM Based on Fast Walsh-Hadamard Transform
9
作者 Saeed Mohsen Sherif S.M.Ghoneim +2 位作者 Mohammed S.Alzaidi Abdullah Alzahrani Ashraf Mohamed Ali Hassan 《Computers, Materials & Continua》 SCIE EI 2023年第6期5271-5286,共16页
Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish betwee... Classification of electroencephalogram(EEG)signals for humans can be achieved via artificial intelligence(AI)techniques.Especially,the EEG signals associated with seizure epilepsy can be detected to distinguish between epileptic and non-epileptic regions.From this perspective,an automated AI technique with a digital processing method can be used to improve these signals.This paper proposes two classifiers:long short-term memory(LSTM)and support vector machine(SVM)for the classification of seizure and non-seizure EEG signals.These classifiers are applied to a public dataset,namely the University of Bonn,which consists of 2 classes–seizure and non-seizure.In addition,a fast Walsh-Hadamard Transform(FWHT)technique is implemented to analyze the EEG signals within the recurrence space of the brain.Thus,Hadamard coefficients of the EEG signals are obtained via the FWHT.Moreover,the FWHT is contributed to generate an efficient derivation of seizure EEG recordings from non-seizure EEG recordings.Also,a k-fold cross-validation technique is applied to validate the performance of the proposed classifiers.The LSTM classifier provides the best performance,with a testing accuracy of 99.00%.The training and testing loss rates for the LSTM are 0.0029 and 0.0602,respectively,while the weighted average precision,recall,and F1-score for the LSTM are 99.00%.The results of the SVM classifier in terms of accuracy,sensitivity,and specificity reached 91%,93.52%,and 91.3%,respectively.The computational time consumed for the training of the LSTM and SVM is 2000 and 2500 s,respectively.The results show that the LSTM classifier provides better performance than SVM in the classification of EEG signals.Eventually,the proposed classifiers provide high classification accuracy compared to previously published classifiers. 展开更多
关键词 ELECTROENCEPHALOGRAM LSTM SVM fast Walsh-Hadamard transform SEIZURE accuracy sensitivity SPECIFICITY
下载PDF
Deep Learning with a Novel Concoction Loss Function for Identification of Ophthalmic Disease
10
作者 Sayyid Kamran Hussain Ali Haider Khan +3 位作者 Malek Alrashidi Sajid Iqbal Qazi Mudassar Ilyas Kamran Shah 《Computers, Materials & Continua》 SCIE EI 2023年第9期3763-3781,共19页
As ocular computer-aided diagnostic(CAD)tools become more widely accessible,many researchers are developing deep learning(DL)methods to aid in ocular disease(OHD)diagnosis.Common eye diseases like cataracts(CATR),glau... As ocular computer-aided diagnostic(CAD)tools become more widely accessible,many researchers are developing deep learning(DL)methods to aid in ocular disease(OHD)diagnosis.Common eye diseases like cataracts(CATR),glaucoma(GLU),and age-related macular degeneration(AMD)are the focus of this study,which uses DL to examine their identification.Data imbalance and outliers are widespread in fundus images,which can make it difficult to apply manyDL algorithms to accomplish this analytical assignment.The creation of efficient and reliable DL algorithms is seen to be the key to further enhancing detection performance.Using the analysis of images of the color of the retinal fundus,this study offers a DL model that is combined with a one-of-a-kind concoction loss function(CLF)for the automated identification of OHD.This study presents a combination of focal loss(FL)and correntropy-induced loss functions(CILF)in the proposed DL model to improve the recognition performance of classifiers for biomedical data.This is done because of the good generalization and robustness of these two types of losses in addressing complex datasets with class imbalance and outliers.The classification performance of the DL model with our proposed loss function is compared to that of the baseline models using accuracy(ACU),recall(REC),specificity(SPF),Kappa,and area under the receiver operating characteristic curve(AUC)as the evaluation metrics.The testing shows that the method is reliable and efficient. 展开更多
关键词 Deep learning MULTI-CLASSIFICATION focal loss CNN eye disease
下载PDF
Early Detection of Alzheimer’s Disease Based on Laplacian Re-Decomposition and XGBoosting
11
作者 Hala Ahmed Hassan Soliman +2 位作者 Shaker El-Sappagh Tamer Abuhmed Mohammed Elmogy 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2773-2795,共23页
The precise diagnosis of Alzheimer’s disease is critical for patient treatment,especially at the early stage,because awareness of the severity and progression risks lets patients take preventative actions before irre... The precise diagnosis of Alzheimer’s disease is critical for patient treatment,especially at the early stage,because awareness of the severity and progression risks lets patients take preventative actions before irreversible brain damage occurs.It is possible to gain a holistic view of Alzheimer’s disease staging by combining multiple data modalities,known as image fusion.In this paper,the study proposes the early detection of Alzheimer’s disease using different modalities of Alzheimer’s disease brain images.First,the preprocessing was performed on the data.Then,the data augmentation techniques are used to handle overfitting.Also,the skull is removed to lead to good classification.In the second phase,two fusion stages are used:pixel level(early fusion)and feature level(late fusion).We fused magnetic resonance imaging and positron emission tomography images using early fusion(Laplacian Re-Decomposition)and late fusion(Canonical Correlation Analysis).The proposed system used magnetic resonance imaging and positron emission tomography to take advantage of each.Magnetic resonance imaging system’s primary benefits are providing images with excellent spatial resolution and structural information for specific organs.Positron emission tomography images can provide functional information and the metabolisms of particular tissues.This characteristic helps clinicians detect diseases and tumor progression at an early stage.Third,the feature extraction of fused images is extracted using a convolutional neural network.In the case of late fusion,the features are extracted first and then fused.Finally,the proposed system performs XGB to classify Alzheimer’s disease.The system’s performance was evaluated using accuracy,specificity,and sensitivity.All medical data were retrieved in the 2D format of 256×256 pixels.The classifiers were optimized to achieve the final results:for the decision tree,the maximum depth of a tree was 2.The best number of trees for the random forest was 60;for the support vector machine,the maximum depth was 4,and the kernel gamma was 0.01.The system achieved an accuracy of 98.06%,specificity of 94.32%,and sensitivity of 97.02%in the case of early fusion.Also,if the system achieved late fusion,accuracy was 99.22%,specificity was 96.54%,and sensitivity was 99.54%. 展开更多
关键词 Alzheimer’s disease(AD) machine learning(ML) image fusion Laplacian Re-decomposition(LRD) XGBoosting
下载PDF
Detection of Left Ventricular Cavity from Cardiac MRI Images Using Faster R-CNN
12
作者 Zakarya Farea Shaaf Muhammad Mahadi Abdul Jamil +3 位作者 Radzi Ambar Ahmed Abdu Alattab Anwar Ali Yahya Yousef Asiri 《Computers, Materials & Continua》 SCIE EI 2023年第1期1819-1835,共17页
The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interes... The automatic localization of the left ventricle(LV)in short-axis magnetic resonance(MR)images is a required step to process cardiac images using convolutional neural networks for the extraction of a region of interest(ROI).The precise extraction of the LV’s ROI from cardiac MRI images is crucial for detecting heart disorders via cardiac segmentation or registration.Nevertheless,this task appears to be intricate due to the diversities in the size and shape of the LV and the scattering of surrounding tissues across different slices.Thus,this study proposed a region-based convolutional network(Faster R-CNN)for the LV localization from short-axis cardiac MRI images using a region proposal network(RPN)integrated with deep feature classification and regression.Themodel was trained using images with corresponding bounding boxes(labels)around the LV,and various experiments were applied to select the appropriate layers and set the suitable hyper-parameters.The experimental findings showthat the proposed modelwas adequate,with accuracy,precision,recall,and F1 score values of 0.91,0.94,0.95,and 0.95,respectively.This model also allows the cropping of the detected area of LV,which is vital in reducing the computational cost and time during segmentation and classification procedures.Therefore,itwould be an ideal model and clinically applicable for diagnosing cardiac diseases. 展开更多
关键词 Cardiac short-axis MRI images automatic left ventricle localization deep learning models faster R-CNN
下载PDF
Green Roof Performance for Stormwater Management in Equatorial Urban Areas Using Storm Water Management Model (SWMM)
13
作者 King Kuok Kuok Po Chan Chiu +2 位作者 Mei Yun Chin Md. Rezaur Rahman Muhammad Khusairy Bakri 《Journal of Water Resource and Protection》 2023年第12期706-720,共15页
Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green ... Many Low Impact Developments (LIDs) have recently been developed as a sustainable integrated strategy for managing the quantity and quality of stormwater and surrounding amenities. Previous research showed that green roof is one of the most promising LIDs for slowing down rainwater, controlling rainwater volume, and enhancing rainwater quality by filtering and leaching contaminants from the substrate. However, there is no guideline for green roof design in Malaysia. Hence, Investigating the viability of using green roofs to manage stormwater and address flash flood hazards is urgently necessary. This study used the Storm Water Management Model (SWMM) to evaluate the effectiveness of green roof in managing stormwater and improving rainwater quality. The selected study area is the multistory car park (MSCP) rooftop at Swinburne University of Technology Sarawak Campus. Nine green roof models with different configurations were created. Results revealed that the optimum design of a green roof is 100 mm of berm height, 150 mm of soil thickness, and 50 mm of drainage mat thickness. With the ability to reduce runoff generation by 26.73%, reduce TSS by 89.75%, TP by 93.07%, TN by 93.16%, and improved BOD by 81.33%. However, pH values dropped as low as 5.933 and became more acidic due to the substrates in green roof. These findings demonstrated that green roofs improve water quality, able to temporarily store excess rainfall and it is very promising and sustainable tool in managing stormwater. 展开更多
关键词 Green Roof Low Impact Development (LID) Storm Water Management Model (SWMM) Storage Capacity Pollutants Removal
下载PDF
Ranking of Web Pages in a Personalized Search
14
作者 Mahmoud Abou Ghaly 《Journal of Computer and Communications》 2023年第2期89-101,共13页
The basic idea behind a personalized web search is to deliver search results that are tailored to meet user needs, which is one of the growing concepts in web technologies. The personalized web search presented in thi... The basic idea behind a personalized web search is to deliver search results that are tailored to meet user needs, which is one of the growing concepts in web technologies. The personalized web search presented in this paper is based on exploiting the implicit feedbacks of user satisfaction during her web browsing history to construct a user profile storing the web pages the user is highly interested in. A weight is assigned to each page stored in the user’s profile;this weight reflects the user’s interest in this page. We name this weight the relative rank of the page, since it depends on the user issuing the query. Therefore, the ranking algorithm provided in this paper is based on the principle that;the rank assigned to a page is the addition of two rank values R_rank and A_rank. A_rank is an absolute rank, since it is fixed for all users issuing the same query, it only depends on the link structures of the web and on the keywords of the query. Thus, it could be calculated by the PageRank algorithm suggested by Brin and Page in 1998 and used by the google search engine. While, R_rank is the relative rank, it is calculated by the methods given in this paper which depends mainly on recording implicit measures of user satisfaction during her previous browsing history. 展开更多
关键词 Implicit Feedback Personalized Search Web Page Ranking User Profile
下载PDF
Adaptable and Dynamic Access Control Decision-Enforcement Approach Based on Multilayer Hybrid Deep Learning Techniques in BYOD Environment
15
作者 Aljuaid Turkea Ayedh M Ainuddin Wahid Abdul Wahab Mohd Yamani Idna Idris 《Computers, Materials & Continua》 SCIE EI 2024年第9期4663-4686,共24页
Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control sy... Organizations are adopting the Bring Your Own Device(BYOD)concept to enhance productivity and reduce expenses.However,this trend introduces security challenges,such as unauthorized access.Traditional access control systems,such as Attribute-Based Access Control(ABAC)and Role-Based Access Control(RBAC),are limited in their ability to enforce access decisions due to the variability and dynamism of attributes related to users and resources.This paper proposes a method for enforcing access decisions that is adaptable and dynamic,based on multilayer hybrid deep learning techniques,particularly the Tabular Deep Neural Network Tabular DNN method.This technique transforms all input attributes in an access request into a binary classification(allow or deny)using multiple layers,ensuring accurate and efficient access decision-making.The proposed solution was evaluated using the Kaggle Amazon access control policy dataset and demonstrated its effectiveness by achieving a 94%accuracy rate.Additionally,the proposed solution enhances the implementation of access decisions based on a variety of resource and user attributes while ensuring privacy through indirect communication with the Policy Administration Point(PAP).This solution significantly improves the flexibility of access control systems,making themmore dynamic and adaptable to the evolving needs ofmodern organizations.Furthermore,it offers a scalable approach to manage the complexities associated with the BYOD environment,providing a robust framework for secure and efficient access management. 展开更多
关键词 BYOD security access control access control decision-enforcement deep learning neural network techniques TabularDNN MULTILAYER dynamic adaptable FLEXIBILITY bottlenecks performance policy conflict
下载PDF
RUSAS: Roman Urdu Sentiment Analysis System
16
作者 Kazim Jawad Muhammad Ahmad +1 位作者 Majdah Alvi Muhammad Bux Alvi 《Computers, Materials & Continua》 SCIE EI 2024年第4期1463-1480,共18页
Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the intern... Sentiment analysis, the meta field of Natural Language Processing (NLP), attempts to analyze and identify thesentiments in the opinionated text data. People share their judgments, reactions, and feedback on the internetusing various languages. Urdu is one of them, and it is frequently used worldwide. Urdu-speaking people prefer tocommunicate on social media in Roman Urdu (RU), an English scripting style with the Urdu language dialect.Researchers have developed versatile lexical resources for features-rich comprehensive languages, but limitedlinguistic resources are available to facilitate the sentiment classification of Roman Urdu. This effort encompassesextracting subjective expressions in Roman Urdu and determining the implied opinionated text polarity. Theprimary sources of the dataset are Daraz (an e-commerce platform), Google Maps, and the manual effort. Thecontributions of this study include a Bilingual Roman Urdu Language Detector (BRULD) and a Roman UrduSpelling Checker (RUSC). These integrated modules accept the user input, detect the text language, correct thespellings, categorize the sentiments, and return the input sentence’s orientation with a sentiment intensity score.The developed system gains strength with each input experience gradually. The results show that the languagedetector gives an accuracy of 97.1% on a close domain dataset, with an overall sentiment classification accuracy of94.3%. 展开更多
关键词 Roman Urdu sentiment analysis Roman Urdu language detector Roman Urdu spelling checker FLASK
下载PDF
DNBP-CCA:A Novel Approach to Enhancing Heterogeneous Data Traffic and Reliable Data Transmission for Body Area Network
17
作者 Abdulwadood Alawadhi Mohd.Hasbullah Omar +3 位作者 Abdullah Almogahed Noradila Nordin Salman A.Alqahtani Atif M.Alamri 《Computers, Materials & Continua》 SCIE EI 2024年第5期2851-2878,共28页
The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-bas... The increased adoption of Internet of Medical Things (IoMT) technologies has resulted in the widespread use ofBody Area Networks (BANs) in medical and non-medical domains. However, the performance of IEEE 802.15.4-based BANs is impacted by challenges related to heterogeneous data traffic requirements among nodes, includingcontention during finite backoff periods, association delays, and traffic channel access through clear channelassessment (CCA) algorithms. These challenges lead to increased packet collisions, queuing delays, retransmissions,and the neglect of critical traffic, thereby hindering performance indicators such as throughput, packet deliveryratio, packet drop rate, and packet delay. Therefore, we propose Dynamic Next Backoff Period and Clear ChannelAssessment (DNBP-CCA) schemes to address these issues. The DNBP-CCA schemes leverage a combination ofthe Dynamic Next Backoff Period (DNBP) scheme and the Dynamic Next Clear Channel Assessment (DNCCA)scheme. The DNBP scheme employs a fuzzy Takagi, Sugeno, and Kang (TSK) model’s inference system toquantitatively analyze backoff exponent, channel clearance, collision ratio, and data rate as input parameters. Onthe other hand, the DNCCA scheme dynamically adapts the CCA process based on requested data transmission tothe coordinator, considering input parameters such as buffer status ratio and acknowledgement ratio. As a result,simulations demonstrate that our proposed schemes are better than some existing representative approaches andenhance data transmission, reduce node collisions, improve average throughput, and packet delivery ratio, anddecrease average packet drop rate and packet delay. 展开更多
关键词 Internet of Medical Things body area networks backoff period tsk fuzzy model clear channel assessment media access control
下载PDF
Pseudo channel:time embedding for motor imagery decoding
18
作者 MIAO Zhengqing ZHAO Meirong 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期308-317,共10页
Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,te... Motor imagery(MI)based electroencephalogram(EEG)represents a frontier in enabling direct neural control of external devices and advancing neural rehabilitation.This study introduces a novel time embedding technique,termed traveling-wave based time embedding,utilized as a pseudo channel to enhance the decoding accuracy of MI-EEG signals across various neural network architectures.Unlike traditional neural network methods that fail to account for the temporal dynamics in MI-EEG in individual difference,our approach captures time-related changes for different participants based on a priori knowledge.Through extensive experimentation with multiple participants,we demonstrate that this method not only improves classification accuracy but also exhibits greater adaptability to individual differences compared to position encoding used in Transformer architecture.Significantly,our results reveal that traveling-wave based time embedding crucially enhances decoding accuracy,particularly for participants typically considered“EEG-illiteracy”.As a novel direction in EEG research,the traveling-wave based time embedding not only offers fresh insights for neural network decoding strategies but also expands new avenues for research into attention mechanisms in neuroscience and a deeper understanding of EEG signals. 展开更多
关键词 motor imagery(MI) pseudo channel electroencephalogram(EEG) neural networks
下载PDF
Phishing Attacks Detection Using EnsembleMachine Learning Algorithms
19
作者 Nisreen Innab Ahmed Abdelgader Fadol Osman +4 位作者 Mohammed Awad Mohammed Ataelfadiel Marwan Abu-Zanona Bassam Mohammad Elzaghmouri Farah H.Zawaideh Mouiad Fadeil Alawneh 《Computers, Materials & Continua》 SCIE EI 2024年第7期1325-1345,共21页
Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise ... Phishing,an Internet fraudwhere individuals are deceived into revealing critical personal and account information,poses a significant risk to both consumers and web-based institutions.Data indicates a persistent rise in phishing attacks.Moreover,these fraudulent schemes are progressively becoming more intricate,thereby rendering them more challenging to identify.Hence,it is imperative to utilize sophisticated algorithms to address this issue.Machine learning is a highly effective approach for identifying and uncovering these harmful behaviors.Machine learning(ML)approaches can identify common characteristics in most phishing assaults.In this paper,we propose an ensemble approach and compare it with six machine learning techniques to determine the type of website and whether it is normal or not based on two phishing datasets.After that,we used the normalization technique on the dataset to transform the range of all the features into the same range.The findings of this paper for all algorithms are as follows in the first dataset based on accuracy,precision,recall,and F1-score,respectively:Decision Tree(DT)(0.964,0.961,0.976,0.968),Random Forest(RF)(0.970,0.964,0.984,0.974),Gradient Boosting(GB)(0.960,0.959,0.971,0.965),XGBoost(XGB)(0.973,0.976,0.976,0.976),AdaBoost(0.934,0.934,0.950,0.942),Multi Layer Perceptron(MLP)(0.970,0.971,0.976,0.974)and Voting(0.978,0.975,0.987,0.981).So,the Voting classifier gave the best results.While in the second dataset,all the algorithms gave the same results in four evaluation metrics,which indicates that each of them can effectively accomplish the prediction process.Also,this approach outperformed the previous work in detecting phishing websites with high accuracy,a lower false negative rate,a shorter prediction time,and a lower false positive rate. 展开更多
关键词 Social engineering ATTACKS phishing attacks machine learning SECURITY artificial intelligence
下载PDF
Nodule Detection Using Local Binary Pattern Features to Enhance Diagnostic Decisions
20
作者 Umar Rashid Arfan Jaffar +2 位作者 Muhammad Rashid Mohammed S.Alshuhri Sheeraz Akram 《Computers, Materials & Continua》 SCIE EI 2024年第3期3377-3390,共14页
Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diamet... Pulmonary nodules are small, round, or oval-shaped growths on the lungs. They can be benign (noncancerous) or malignant (cancerous). The size of a nodule can range from a few millimeters to a few centimeters in diameter. Nodules may be found during a chest X-ray or other imaging test for an unrelated health problem. In the proposed methodology pulmonary nodules can be classified into three stages. Firstly, a 2D histogram thresholding technique is used to identify volume segmentation. An ant colony optimization algorithm is used to determine the optimal threshold value. Secondly, geometrical features such as lines, arcs, extended arcs, and ellipses are used to detect oval shapes. Thirdly, Histogram Oriented Surface Normal Vector (HOSNV) feature descriptors can be used to identify nodules of different sizes and shapes by using a scaled and rotation-invariant texture description. Smart nodule classification was performed with the XGBoost classifier. The results are tested and validated using the Lung Image Consortium Database (LICD). The proposed method has a sensitivity of 98.49% for nodules sized 3–30 mm. 展开更多
关键词 Pulmonary nodules SEGMENTATION HISTOGRAM THRESHOLDING
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部