The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influe...The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.展开更多
基金financed from the funds of the Polish Ministry of Science and Higher Education,grant 11.11.190.555
文摘The estimation of the ground temperature profile with respect to the depth and time is the key issue in many engineering applications which use the ground as a source of thermal energy. In the present work, the influence of the model components on the calculated ground temperature distribution has been analysed in order to develop an accurate and robust model for the prediction of the ground temperature profile. The presented mathematical model takes into account all the key phenomena occurring in the soil and on its top surface. The impact of individual model elements on the temperature of the soil has been analysed. It has been found that the simplest models and the most complex model result in a similar temperature variation over the simulation period, but only at a low depth. A detailed analysis shows that a larger depth requires more complex models and the calculation with the use of simple models results in an incorrect temperature and a theoretical COP estimation.