The past few years have been very eventful with respect to the evolution of the concept and implementation of “left-handed materials (LHMs)”. This paper elucidates antenna parameter optimization using 2 Segment Laby...The past few years have been very eventful with respect to the evolution of the concept and implementation of “left-handed materials (LHMs)”. This paper elucidates antenna parameter optimization using 2 Segment Labyrinth metamaterial embedded in antenna substrate at high frequency (THz). Ansoft HFSS has been used to design and analyse the RMPA (rectangular microstrip patch antenna) with design frequency 9.55 THz and operating range of 8.55 THz to 10.55 THz having RT Duroid (εr = 2.33) as substrate material. Magnetic properties of labyrinth resonator have been used to mathematically demonstrate the negative refraction. Nicolson Ross Wier (NRW) method has been used to retrieve the material parameters from transmission and reflection coefficient. Upon incorporation, bandwidth widens to around 4% and VSWR improves by approx 1.5%.展开更多
This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in w...This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in which the network can switch between a direct transmission mode and a Single-Relay-Selection-based Cooperative Transmission(SRS-CT)mode that employs dynamic decode-and-forward relaying accomplished with Rateless Codes(RCs).Then,under this protocol,an optimization problem is formulated to jointly optimize the network operation mode and the resource allocation in the SRS-CT mode.The formulated problem is difficult to solve because not only does the noncausal Channel State Information(CSI)cause the problem to be stochastic,but also the energy state evolution at each relay is complicated by network operation mode decision and resource allocation.Assuming that noncausal CSI is available,the stochastic optimization issue is first to be addressed by solving an involved deterministic optimization problem via dynamic programming,where the complicated energy state evolution issue is addressed by a layered optimization method.Then,based on a finite-state Markov channel model and assuming that CSI statistical properties are known,the stochastic optimization problem is solved by extending the result derived for the noncausal CSI case to the causal CSI case.Finally,a myopic strategy is proposed to achieve a tradeoff between complexity and performance without the knowledge of CSI statistical properties.The simulation results verify that our proposed SRS-and-RC-based design can achieve a maximum of approximately 40%throughput gain over a simple SRS-and-RC-based baseline scheme in SWIPT-based multi-relay networks.展开更多
Digital design of a digital signal processor involves accurate and high-speed mathematical computation units.DSP units are one of the most power consuming and memory occupying devices.Multipliers are the common buildi...Digital design of a digital signal processor involves accurate and high-speed mathematical computation units.DSP units are one of the most power consuming and memory occupying devices.Multipliers are the common building blocks in most of the DSP units which demands low power and area constraints in the field of portable biomedical devices.This research works attempts multiple power reduction technique to limit the power dissipation of the proposed LUT multiplier unit.A lookup table-based multiplier has the advantage of almost constant area requirement’s irrespective to the increase in bit size of multiplier.Clock gating is usually used to reduce the unnecessary switching activities in idle circlet components.A clock tree structure is employed to enhance the SRAM based lookup table memory architecture.The LUT memory access operation is sequential in nature and instead of address decoder a ring counter is used to scan the memory contents and gated driver tree structure is implemented to control the clock and data switching activities.The proposed algorithm yields 20%of power reduction than existing.展开更多
The present work gives some insight into the subthreshold behaviour of short-channel double-material- gate strained-silicon on silicon-germanium MOSFETs in terms of subthreshold swing and off-current. The formu- latio...The present work gives some insight into the subthreshold behaviour of short-channel double-material- gate strained-silicon on silicon-germanium MOSFETs in terms of subthreshold swing and off-current. The formu- lation of subthreshold current and, thereupon, the subthreshold swing have been done by exploiting the expression of potential distribution in the channel region of the device. The dependence of the subthreshold characteristics on the device parameters, such as Ge mole fraction, gate length ratio, work function of control gate metal and gate length, has been tested in detail. The analytical models have been validated by the numerical simulation results that were obtained from the device simulation software ATLASTM by Silvaco Inc.展开更多
This paper presents the analytical modeling of subthreshold current and subthreshold swing of short- channel fully-depleted (FD) strained-Si-on-insulator (SSOI) MOSFETs having vertical Gaussian-like doping pro- fi...This paper presents the analytical modeling of subthreshold current and subthreshold swing of short- channel fully-depleted (FD) strained-Si-on-insulator (SSOI) MOSFETs having vertical Gaussian-like doping pro- file in the channel. The subthreshold current and subthreshold swing have been derived using the parabolic approx- imation method. In addition to the effect of strain on silicon layer, various other device parameters such as channel length (L), gate-oxide thickness (tox), strained-Si channel thickness (ts_Si), peak doping concentration (Np), project range (Rp) and straggle (op) of the Gaussian profile have been considered while predicting the device characteris- tics. The present work may help to overcome the degradation in subthreshold characteristics with strain engineering. These subthreshold current and swing models provide valuable information for strained-Si MOSFET design. Ac- curacy of the proposed models is verified using the commercially available ATLASTM, a two-dimensional (2D) device simulator from SILVACO.展开更多
文摘The past few years have been very eventful with respect to the evolution of the concept and implementation of “left-handed materials (LHMs)”. This paper elucidates antenna parameter optimization using 2 Segment Labyrinth metamaterial embedded in antenna substrate at high frequency (THz). Ansoft HFSS has been used to design and analyse the RMPA (rectangular microstrip patch antenna) with design frequency 9.55 THz and operating range of 8.55 THz to 10.55 THz having RT Duroid (εr = 2.33) as substrate material. Magnetic properties of labyrinth resonator have been used to mathematically demonstrate the negative refraction. Nicolson Ross Wier (NRW) method has been used to retrieve the material parameters from transmission and reflection coefficient. Upon incorporation, bandwidth widens to around 4% and VSWR improves by approx 1.5%.
基金supported in part by the National Natural Science Foundation of China under Grant 61872098 and Grant 61902084the Natural Science Foundation of Guangdong Province under Grant 2017A030313363.
文摘This paper studies a dual-hop Simultaneous Wireless Information and Power Transfer(SWIPT)-based multi-relay network with a direct link.To achieve high throughput in the network,a novel protocol is first developed,in which the network can switch between a direct transmission mode and a Single-Relay-Selection-based Cooperative Transmission(SRS-CT)mode that employs dynamic decode-and-forward relaying accomplished with Rateless Codes(RCs).Then,under this protocol,an optimization problem is formulated to jointly optimize the network operation mode and the resource allocation in the SRS-CT mode.The formulated problem is difficult to solve because not only does the noncausal Channel State Information(CSI)cause the problem to be stochastic,but also the energy state evolution at each relay is complicated by network operation mode decision and resource allocation.Assuming that noncausal CSI is available,the stochastic optimization issue is first to be addressed by solving an involved deterministic optimization problem via dynamic programming,where the complicated energy state evolution issue is addressed by a layered optimization method.Then,based on a finite-state Markov channel model and assuming that CSI statistical properties are known,the stochastic optimization problem is solved by extending the result derived for the noncausal CSI case to the causal CSI case.Finally,a myopic strategy is proposed to achieve a tradeoff between complexity and performance without the knowledge of CSI statistical properties.The simulation results verify that our proposed SRS-and-RC-based design can achieve a maximum of approximately 40%throughput gain over a simple SRS-and-RC-based baseline scheme in SWIPT-based multi-relay networks.
文摘Digital design of a digital signal processor involves accurate and high-speed mathematical computation units.DSP units are one of the most power consuming and memory occupying devices.Multipliers are the common building blocks in most of the DSP units which demands low power and area constraints in the field of portable biomedical devices.This research works attempts multiple power reduction technique to limit the power dissipation of the proposed LUT multiplier unit.A lookup table-based multiplier has the advantage of almost constant area requirement’s irrespective to the increase in bit size of multiplier.Clock gating is usually used to reduce the unnecessary switching activities in idle circlet components.A clock tree structure is employed to enhance the SRAM based lookup table memory architecture.The LUT memory access operation is sequential in nature and instead of address decoder a ring counter is used to scan the memory contents and gated driver tree structure is implemented to control the clock and data switching activities.The proposed algorithm yields 20%of power reduction than existing.
文摘The present work gives some insight into the subthreshold behaviour of short-channel double-material- gate strained-silicon on silicon-germanium MOSFETs in terms of subthreshold swing and off-current. The formu- lation of subthreshold current and, thereupon, the subthreshold swing have been done by exploiting the expression of potential distribution in the channel region of the device. The dependence of the subthreshold characteristics on the device parameters, such as Ge mole fraction, gate length ratio, work function of control gate metal and gate length, has been tested in detail. The analytical models have been validated by the numerical simulation results that were obtained from the device simulation software ATLASTM by Silvaco Inc.
文摘This paper presents the analytical modeling of subthreshold current and subthreshold swing of short- channel fully-depleted (FD) strained-Si-on-insulator (SSOI) MOSFETs having vertical Gaussian-like doping pro- file in the channel. The subthreshold current and subthreshold swing have been derived using the parabolic approx- imation method. In addition to the effect of strain on silicon layer, various other device parameters such as channel length (L), gate-oxide thickness (tox), strained-Si channel thickness (ts_Si), peak doping concentration (Np), project range (Rp) and straggle (op) of the Gaussian profile have been considered while predicting the device characteris- tics. The present work may help to overcome the degradation in subthreshold characteristics with strain engineering. These subthreshold current and swing models provide valuable information for strained-Si MOSFET design. Ac- curacy of the proposed models is verified using the commercially available ATLASTM, a two-dimensional (2D) device simulator from SILVACO.