The low-energy mutual neutralization(MN)reactions Na^(+)+H^(-)→Na(nl)+H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling(QMOCC)method over a wide energy range of 10^(-3)-10^...The low-energy mutual neutralization(MN)reactions Na^(+)+H^(-)→Na(nl)+H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling(QMOCC)method over a wide energy range of 10^(-3)-10^(3) e V/u.Total and state-selective cross sections have been investigated and compared with the available theoretical and experimental data,and the state-selective rate coefficients for the temperature range of 100-10000 K have been obtained.In the present work,all the necessary highly excited states are included,and the influences of rotational couplings and 10 active electrons are considered.It is found that in the energy below 10 e V/u,the Na(4s)state is the most dominant exit state with a contribution of approximately 78%to the branch fraction,which is in best agreement with the experimental data.For energies above 10 e V/u,the MN total cross section is larger than those obtained in other theoretical calculations and shows a slow decreasing trend because the main exit states change,when the energy is above 100 e V/u,the dominant exit state becomes the Na(3p)state,while the Na(4s)state becomes the third most important exit state.The datasets presented in this paper,including the potential energy curve,the radial and rotational couplings,the total and state-selective cross sections,are openly available at https://doi.org/10.57760/sciencedb.j00113.00112.展开更多
CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS...CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS is still lacking. In this work, the high-level MRCI+Q method is used to compute the potential energy curves, dipole moments and transition dipole moments of singlet and triplet states correlated with the lowest dissociation limit of CS, based on which high accurate vibration-rotation levels and spectroscopic constants of bound states are evaluated. The opacity of CS relevant to atmospheric circumstance is computed at a pressure of 100 atms for different temperatures. With the increase of temperature,band systems from different transitions mingle with each other, and band boundaries become blurred, which are originated from the increased population on vibrational excited states and electronic excited states at high temperature.展开更多
The standard method to construct a finite field requires a primitive irreducible polynomial of a given degree. Therefore, it is difficult to apply for the construction of huge finite fields. To avoid this problem, we ...The standard method to construct a finite field requires a primitive irreducible polynomial of a given degree. Therefore, it is difficult to apply for the construction of huge finite fields. To avoid this problem, we propose a new method to construct huge finite fields with the characteristic p = 5 by using an Artin-Schreier tower. Utilizing the recursive basis of the Artin-Schreier tower, we define a nmltiplication algorithm The algorithm can explicitly calculate the multiplication of two elements on the top finite field of this tower, without any primitive element. We also define a linear recurrence equation as an application, which produces a sequence of numbers, and call the new pseudorandom number generator Abstract Syntax Tree (AST) for p = 5. The experircental results show that our new pseudorandom number generator can produce a sequence of numbers with a long period.展开更多
Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely r...Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of "ideal transmission chain(ITC)", which is proved sufficient and necessary(under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks(i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability(quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12204288,11934004,and 12203106)。
文摘The low-energy mutual neutralization(MN)reactions Na^(+)+H^(-)→Na(nl)+H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling(QMOCC)method over a wide energy range of 10^(-3)-10^(3) e V/u.Total and state-selective cross sections have been investigated and compared with the available theoretical and experimental data,and the state-selective rate coefficients for the temperature range of 100-10000 K have been obtained.In the present work,all the necessary highly excited states are included,and the influences of rotational couplings and 10 active electrons are considered.It is found that in the energy below 10 e V/u,the Na(4s)state is the most dominant exit state with a contribution of approximately 78%to the branch fraction,which is in best agreement with the experimental data.For energies above 10 e V/u,the MN total cross section is larger than those obtained in other theoretical calculations and shows a slow decreasing trend because the main exit states change,when the energy is above 100 e V/u,the dominant exit state becomes the Na(3p)state,while the Na(4s)state becomes the third most important exit state.The datasets presented in this paper,including the potential energy curve,the radial and rotational couplings,the total and state-selective cross sections,are openly available at https://doi.org/10.57760/sciencedb.j00113.00112.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11934004 and 12203106)Fundamental Research Funds in Heilongjiang Province Universities, China (Grant No. 145109127)the Scientific Research Plan Projects of Heilongjiang Education Department, China (Grant Nos. WNCGQJKF202103 and DWCGQKF202104)。
文摘CS molecule, which plays a key role in atmospheric and astrophysical circumstances, has drawn great attention for long time. Owing to its large state density, the detailed information of the electronic structure of CS is still lacking. In this work, the high-level MRCI+Q method is used to compute the potential energy curves, dipole moments and transition dipole moments of singlet and triplet states correlated with the lowest dissociation limit of CS, based on which high accurate vibration-rotation levels and spectroscopic constants of bound states are evaluated. The opacity of CS relevant to atmospheric circumstance is computed at a pressure of 100 atms for different temperatures. With the increase of temperature,band systems from different transitions mingle with each other, and band boundaries become blurred, which are originated from the increased population on vibrational excited states and electronic excited states at high temperature.
基金supported by Overseas Scholars Research Fund of Heilongjiang Provinicial Education Department
文摘The standard method to construct a finite field requires a primitive irreducible polynomial of a given degree. Therefore, it is difficult to apply for the construction of huge finite fields. To avoid this problem, we propose a new method to construct huge finite fields with the characteristic p = 5 by using an Artin-Schreier tower. Utilizing the recursive basis of the Artin-Schreier tower, we define a nmltiplication algorithm The algorithm can explicitly calculate the multiplication of two elements on the top finite field of this tower, without any primitive element. We also define a linear recurrence equation as an application, which produces a sequence of numbers, and call the new pseudorandom number generator Abstract Syntax Tree (AST) for p = 5. The experircental results show that our new pseudorandom number generator can produce a sequence of numbers with a long period.
基金supported by the National Natural Science Foundation of China(Grant No.11331011)Support from the Center for Statistical Science of Peking University was also gratefully acknowledged
文摘Fixed-point attractors with global stability manifest themselves in a number of gene regulatory networks. This property indicates the stability of regulatory networks against small state perturbations and is closely related to other complex dynamics. In this paper, we aim to reveal the core modules in regulatory networks that determine their global attractors and the relationship between these core modules and other motifs. This work has been done via three steps. Firstly, inspired by the signal transmission in the regulation process, we extract the model of chain-like network from regulation networks. We propose a module of "ideal transmission chain(ITC)", which is proved sufficient and necessary(under certain condition) to form a global fixed-point in the context of chain-like network. Secondly, by examining two well-studied regulatory networks(i.e., the cell-cycle regulatory networks of Budding yeast and Fission yeast), we identify the ideal modules in true regulation networks and demonstrate that the modules have a superior contribution to network stability(quantified by the relative size of the biggest attraction basin). Thirdly, in these two regulation networks, we find that the double negative feedback loops, which are the key motifs of forming bistability in regulation, are connected to these core modules with high network stability. These results have shed new light on the connection between the topological feature and the dynamic property of regulatory networks.