Based on the summary of the highly precise datings of the metal deposits and related granitic rocks in North China craton and adjacent areas, such as the molybdenite Re-Os datings, 40Ar-39Ar datings of mica, K-feldspa...Based on the summary of the highly precise datings of the metal deposits and related granitic rocks in North China craton and adjacent areas, such as the molybdenite Re-Os datings, 40Ar-39Ar datings of mica, K-feldspar and quartz, some Rb-Sr isochrons, and the SHRIMP zircon U-Pb dating and single grain zircon U-Pb dating, we suggest that the large-scale mineralization in North China craton and adjacent areas take place in three periods of 200-160Ma, 140Ma, and 130-110Ma. Their corresponding geodynamic settings are proposed to be the collision orogenic process, transformation of the tectonic regime, and delamination of the lithosphere, respectively, in light of analyzing the Mesozoic geodynamic evolution in the North China craton.展开更多
The recently discovered nitrate ore field in the Turpan-Hami Basin of western China represents an estimated resource of 2.5 billion tons, and is comparable in scale to the Atacama Desert super-scale nitrate deposit in...The recently discovered nitrate ore field in the Turpan-Hami Basin of western China represents an estimated resource of 2.5 billion tons, and is comparable in scale to the Atacama Desert super-scale nitrate deposit in Chile. The research on this area is rarely carried out, and the origin of the deposits remains uncertain. In this study, new methods were used to systematically analyze N and O isotopes in nitrate minerals collected from the Kumutage, Xiaocaohu, Wuzongbulak, Dawadi, Tuyugou, and Shaer ore deposits in the Turpan-Hami Basin. The data showed that the δ15NAir value ranges from 0.7‰ to 27.6‰, but mostly between 2‰ and 6‰, which was similar to atmospheric NO3-. The 18O was highly enriched with δ18OV-SMOW varying from 30.2‰ to 46.7‰. This differs from levels in deposits derived from microbial nitrogen fixation, but is similar to those in atmospheric nitrates. N and O isotopes data indicated that nitrate deposits in Turpan-Hami Basin must be the result of deposition of atmospheric nitrate particles. Although atmospheric nitrate particles are common, the nitrate deposits could form only under the condition of long-term extreme drought climate and very limited biological activity. This paper summarized the ore-forming mechanism of different types nitrate deposits based on their geological setting.展开更多
基金the Major State Basic Research Program of China(Grant No.G1999043211) the China State Mineral Resources Investigation Program(Grant No.K14).
文摘Based on the summary of the highly precise datings of the metal deposits and related granitic rocks in North China craton and adjacent areas, such as the molybdenite Re-Os datings, 40Ar-39Ar datings of mica, K-feldspar and quartz, some Rb-Sr isochrons, and the SHRIMP zircon U-Pb dating and single grain zircon U-Pb dating, we suggest that the large-scale mineralization in North China craton and adjacent areas take place in three periods of 200-160Ma, 140Ma, and 130-110Ma. Their corresponding geodynamic settings are proposed to be the collision orogenic process, transformation of the tectonic regime, and delamination of the lithosphere, respectively, in light of analyzing the Mesozoic geodynamic evolution in the North China craton.
基金supported by Basic Scientific Research Operation Cost of State-Leveled Public Welfare Scientific Research Courtyard (Grant No. K0926)National Natural Science Foundation of China (Grant Nos. 40543013, 40873003)Key Laboratory of Isotope Geology, Ministry of Land and Resources
文摘The recently discovered nitrate ore field in the Turpan-Hami Basin of western China represents an estimated resource of 2.5 billion tons, and is comparable in scale to the Atacama Desert super-scale nitrate deposit in Chile. The research on this area is rarely carried out, and the origin of the deposits remains uncertain. In this study, new methods were used to systematically analyze N and O isotopes in nitrate minerals collected from the Kumutage, Xiaocaohu, Wuzongbulak, Dawadi, Tuyugou, and Shaer ore deposits in the Turpan-Hami Basin. The data showed that the δ15NAir value ranges from 0.7‰ to 27.6‰, but mostly between 2‰ and 6‰, which was similar to atmospheric NO3-. The 18O was highly enriched with δ18OV-SMOW varying from 30.2‰ to 46.7‰. This differs from levels in deposits derived from microbial nitrogen fixation, but is similar to those in atmospheric nitrates. N and O isotopes data indicated that nitrate deposits in Turpan-Hami Basin must be the result of deposition of atmospheric nitrate particles. Although atmospheric nitrate particles are common, the nitrate deposits could form only under the condition of long-term extreme drought climate and very limited biological activity. This paper summarized the ore-forming mechanism of different types nitrate deposits based on their geological setting.