期刊文献+
共找到547篇文章
< 1 2 28 >
每页显示 20 50 100
Orbit Weighting Scheme in the Context of Vector Space Information Retrieval
1
作者 Ahmad Ababneh Yousef Sanjalawe +2 位作者 Salam Fraihat Salam Al-E’mari Hamzah Alqudah 《Computers, Materials & Continua》 SCIE EI 2024年第7期1347-1379,共33页
This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schem... This study introduces the Orbit Weighting Scheme(OWS),a novel approach aimed at enhancing the precision and efficiency of Vector Space information retrieval(IR)models,which have traditionally relied on weighting schemes like tf-idf and BM25.These conventional methods often struggle with accurately capturing document relevance,leading to inefficiencies in both retrieval performance and index size management.OWS proposes a dynamic weighting mechanism that evaluates the significance of terms based on their orbital position within the vector space,emphasizing term relationships and distribution patterns overlooked by existing models.Our research focuses on evaluating OWS’s impact on model accuracy using Information Retrieval metrics like Recall,Precision,InterpolatedAverage Precision(IAP),andMeanAverage Precision(MAP).Additionally,we assessOWS’s effectiveness in reducing the inverted index size,crucial for model efficiency.We compare OWS-based retrieval models against others using different schemes,including tf-idf variations and BM25Delta.Results reveal OWS’s superiority,achieving a 54%Recall and 81%MAP,and a notable 38%reduction in the inverted index size.This highlights OWS’s potential in optimizing retrieval processes and underscores the need for further research in this underrepresented area to fully leverage OWS’s capabilities in information retrieval methodologies. 展开更多
关键词 Information retrieval orbit weighting scheme semantic text analysis Tf-Idf weighting scheme vector space model
下载PDF
A Comprehensive Survey of Recent Transformers in Image,Video and Diffusion Models
2
作者 Dinh Phu Cuong Le Dong Wang Viet-Tuan Le 《Computers, Materials & Continua》 SCIE EI 2024年第7期37-60,共24页
Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by ut... Transformer models have emerged as dominant networks for various tasks in computer vision compared to Convolutional Neural Networks(CNNs).The transformers demonstrate the ability to model long-range dependencies by utilizing a self-attention mechanism.This study aims to provide a comprehensive survey of recent transformerbased approaches in image and video applications,as well as diffusion models.We begin by discussing existing surveys of vision transformers and comparing them to this work.Then,we review the main components of a vanilla transformer network,including the self-attention mechanism,feed-forward network,position encoding,etc.In the main part of this survey,we review recent transformer-based models in three categories:Transformer for downstream tasks,Vision Transformer for Generation,and Vision Transformer for Segmentation.We also provide a comprehensive overview of recent transformer models for video tasks and diffusion models.We compare the performance of various hierarchical transformer networks for multiple tasks on popular benchmark datasets.Finally,we explore some future research directions to further improve the field. 展开更多
关键词 TRANSFORMER vision transformer self-attention hierarchical transformer diffusion models
下载PDF
BLS-identification:A device fingerprint classification mechanism based on broad learning for Internet of Things
3
作者 Yu Zhang Bei Gong Qian Wang 《Digital Communications and Networks》 SCIE CSCD 2024年第3期728-739,共12页
The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprin... The popularity of the Internet of Things(IoT)has enabled a large number of vulnerable devices to connect to the Internet,bringing huge security risks.As a network-level security authentication method,device fingerprint based on machine learning has attracted considerable attention because it can detect vulnerable devices in complex and heterogeneous access phases.However,flexible and diversified IoT devices with limited resources increase dif-ficulty of the device fingerprint authentication method executed in IoT,because it needs to retrain the model network to deal with incremental features or types.To address this problem,a device fingerprinting mechanism based on a Broad Learning System(BLS)is proposed in this paper.The mechanism firstly characterizes IoT devices by traffic analysis based on the identifiable differences of the traffic data of IoT devices,and extracts feature parameters of the traffic packets.A hierarchical hybrid sampling method is designed at the preprocessing phase to improve the imbalanced data distribution and reconstruct the fingerprint dataset.The complexity of the dataset is reduced using Principal Component Analysis(PCA)and the device type is identified by training weights using BLS.The experimental results show that the proposed method can achieve state-of-the-art accuracy and spend less training time than other existing methods. 展开更多
关键词 Device fingerprint Traffic analysis Class imbalance Broad learning system Access authentication
下载PDF
Controlled release of dexamethasone from fibrin sealant for intratympanic administration in inner ear therapy
4
作者 Jing Zou 《Journal of Otology》 CAS CSCD 2024年第1期55-58,共4页
The aim of the present work was to show the sustainability of fibrin sealant in releasing dexamethasone and adjust the protocol for clinical application of the novel method in the treatment of Meniere’s disease (MD) ... The aim of the present work was to show the sustainability of fibrin sealant in releasing dexamethasone and adjust the protocol for clinical application of the novel method in the treatment of Meniere’s disease (MD) and sudden sensorineural hearing loss (SSHL).Gelation occurred shortly after mixing dexamethasone-containing fibrinogen with thrombin.Dexamethasone was constantly released for at least 16 d at a stable level after 7d in protocol 1 (low-dose),while it was robustly released within 4 d and slowed afterward until 10 d in protocol 2(high-dose).There were significant differences among the time points in Protocol 2 (p<0.01,ANOVA),and the exponential model with the formula y=15.299*e~(-0.483*t) fits the association.The estimated concentration of dexamethasone released on 7 d in protocol 2 was slightly lower than that observed in protocol 1.The fibrin sealant is capable of constantly releasing dexamethasone with adjustable dynamics.Targeted and minimally invasive administration of the material can be achieved in the clinic by sequential injections of the fluids using a soft-tipped catheter. 展开更多
关键词 Intratympanic drug delivery Controlled release CORTICOSTEROIDS Meniere's disease Sudden sensorineural hearing loss
下载PDF
Comparative Analysis of Machine Learning Algorithms for Email Phishing Detection Using TF-IDF, Word2Vec, and BERT
5
作者 Arar Al Tawil Laiali Almazaydeh +3 位作者 Doaa Qawasmeh Baraah Qawasmeh Mohammad Alshinwan Khaled Elleithy 《Computers, Materials & Continua》 SCIE EI 2024年第11期3395-3412,共18页
Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Te... Cybercriminals often use fraudulent emails and fictitious email accounts to deceive individuals into disclosing confidential information,a practice known as phishing.This study utilizes three distinct methodologies,Term Frequency-Inverse Document Frequency,Word2Vec,and Bidirectional Encoder Representations from Transform-ers,to evaluate the effectiveness of various machine learning algorithms in detecting phishing attacks.The study uses feature extraction methods to assess the performance of Logistic Regression,Decision Tree,Random Forest,and Multilayer Perceptron algorithms.The best results for each classifier using Term Frequency-Inverse Document Frequency were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).Word2Vec’s best results were Multilayer Perceptron(Precision:0.98,Recall:0.98,F1-score:0.98,Accuracy:0.98).The highest performance was achieved using the Bidirectional Encoder Representations from the Transformers model,with Precision,Recall,F1-score,and Accuracy all reaching 0.99.This study highlights how advanced pre-trained models,such as Bidirectional Encoder Representations from Transformers,can significantly enhance the accuracy and reliability of fraud detection systems. 展开更多
关键词 ATTACKS email phishing machine learning security representations from transformers(BERT) text classifeir natural language processing(NLP)
下载PDF
3D reconstruction and defect pattern recognition of bonding wire based on stereo vision
6
作者 Naigong Yu Hongzheng Li +2 位作者 Qiao Xu Ouattara Sie Essaf Firdaous 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第2期348-364,共17页
Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dim... Non-destructive detection of wire bonding defects in integrated circuits(IC)is critical for ensuring product quality after packaging.Image-processing-based methods do not provide a detailed evaluation of the three-dimensional defects of the bonding wire.Therefore,a method of 3D reconstruction and pattern recognition of wire defects based on stereo vision,which can achieve non-destructive detection of bonding wire defects is proposed.The contour features of bonding wires and other electronic components in the depth image is analysed to complete the 3D reconstruction of the bonding wires.Especially to filter the noisy point cloud and obtain an accurate point cloud of the bonding wire surface,a point cloud segmentation method based on spatial surface feature detection(SFD)was proposed.SFD can extract more distinct features from the bonding wire surface during the point cloud segmentation process.Furthermore,in the defect detection process,a directional discretisation descriptor with multiple local normal vectors is designed for defect pattern recognition of bonding wires.The descriptor combines local and global features of wire and can describe the spatial variation trends and structural features of wires.The experimental results show that the method can complete the 3D reconstruction and defect pattern recognition of bonding wires,and the average accuracy of defect recognition is 96.47%,which meets the production requirements of bonding wire defect detection. 展开更多
关键词 bonding wire defect detection point cloud point cloud segmentation
下载PDF
Two-Stage IoT Computational Task Offloading Decision-Making in MEC with Request Holding and Dynamic Eviction
7
作者 Dayong Wang Kamalrulnizam Bin Abu Bakar Babangida Isyaku 《Computers, Materials & Continua》 SCIE EI 2024年第8期2065-2080,共16页
The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support ... The rapid development of Internet of Things(IoT)technology has led to a significant increase in the computational task load of Terminal Devices(TDs).TDs reduce response latency and energy consumption with the support of task-offloading in Multi-access Edge Computing(MEC).However,existing task-offloading optimization methods typically assume that MEC’s computing resources are unlimited,and there is a lack of research on the optimization of task-offloading when MEC resources are exhausted.In addition,existing solutions only decide whether to accept the offloaded task request based on the single decision result of the current time slot,but lack support for multiple retry in subsequent time slots.It is resulting in TD missing potential offloading opportunities in the future.To fill this gap,we propose a Two-Stage Offloading Decision-making Framework(TSODF)with request holding and dynamic eviction.Long Short-Term Memory(LSTM)-based task-offloading request prediction and MEC resource release estimation are integrated to infer the probability of a request being accepted in the subsequent time slot.The framework learns optimized decision-making experiences continuously to increase the success rate of task offloading based on deep learning technology.Simulation results show that TSODF reduces total TD’s energy consumption and delay for task execution and improves task offloading rate and system resource utilization compared to the benchmark method. 展开更多
关键词 Decision making internet of things load prediction task offloading multi-access edge computing
下载PDF
Application of Stork Optimization Algorithm for Solving Sustainable Lot Size Optimization
8
作者 Tareq Hamadneh Khalid Kaabneh +6 位作者 Omar Alssayed Gulnara Bektemyssova Galymzhan Shaikemelev Dauren Umutkulov Zoubida Benmamoun Zeinab Monrazeri Mohammad Dehghani 《Computers, Materials & Continua》 SCIE EI 2024年第8期2005-2030,共26页
The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To a... The efficiency of businesses is often hindered by the challenges encountered in traditional Supply Chain Manage-ment(SCM),which is characterized by elevated risks due to inadequate accountability and transparency.To address these challenges and improve operations in green manufacturing,optimization algorithms play a crucial role in supporting decision-making processes.In this study,we propose a solution to the green lot size optimization issue by leveraging bio-inspired algorithms,notably the Stork Optimization Algorithm(SOA).The SOA draws inspiration from the hunting and winter migration strategies employed by storks in nature.The theoretical framework of SOA is elaborated and mathematically modeled through two distinct phases:exploration,based on migration simulation,and exploitation,based on hunting strategy simulation.To tackle the green lot size optimization issue,our methodology involved gathering real-world data,which was then transformed into a simplified function with multiple constraints aimed at optimizing total costs and minimizing CO_(2) emissions.This function served as input for the SOA model.Subsequently,the SOA model was applied to identify the optimal lot size that strikes a balance between cost-effectiveness and sustainability.Through extensive experimentation,we compared the performance of SOA with twelve established metaheuristic algorithms,consistently demonstrating that SOA outperformed the others.This study’s contribution lies in providing an effective solution to the sustainable lot-size optimization dilemma,thereby reducing environmental impact and enhancing supply chain efficiency.The simulation findings underscore that SOA consistently achieves superior outcomes compared to existing optimization methodologies,making it a promising approach for green manufacturing and sustainable supply chain management. 展开更多
关键词 OPTIMIZATION supply chain management sustainable lot size optimization BIO-INSPIRED METAHEURISTIC STORK
下载PDF
Exploring the effect of fingertip aero-haptic feedforward cues in directing eyes-free target acquisition in VR
9
作者 Xiaofei REN Jian HE +3 位作者 Teng HAN Songxian LIU Mengfei LV Rui ZHOU 《虚拟现实与智能硬件(中英文)》 EI 2024年第2期113-131,共19页
Background The sense of touch plays a crucial role in interactive behavior within virtual spaces,particularly when visual attention is absent.Although haptic feedback has been widely used to compensate for the lack of... Background The sense of touch plays a crucial role in interactive behavior within virtual spaces,particularly when visual attention is absent.Although haptic feedback has been widely used to compensate for the lack of visual cues,the use of tactile information as a predictive feedforward cue to guide hand movements remains unexplored and lacks theoretical understanding.Methods This study introduces a fingertip aero-haptic rendering method to investigate its effectiveness in directing hand movements during eyes-free spatial interactions.The wearable device incorporates a multichannel micro-airflow chamber to deliver adjustable tactile effects on the fingertips.Results The first study verified that tactile directional feedforward cues significantly improve user capabilities in eyes-free target acquisition and that users rely heavily on haptic indications rather than spatial memory to control their hands.A subsequent study examined the impact of enriched tactile feedforward cues on assisting users in determining precise target positions during eyes-free interactions,and assessed the required learning efforts.Conclusions The haptic feedforward effect holds great practical promise in eyeless design for virtual reality.We aim to integrate cognitive models and tactile feedforward cues in the future,and apply richer tactile feedforward information to alleviate users'perceptual deficiencies. 展开更多
关键词 Haptic FEEDFORWARD Virtual reality Aero-haptic
下载PDF
The Impact of Domain Name Server(DNS)over Hypertext Transfer Protocol Secure(HTTPS)on Cyber Security:Limitations,Challenges,and Detection Techniques
10
作者 Muhammad Dawood Shanshan Tu +4 位作者 Chuangbai Xiao Muhammad Haris Hisham Alasmary Muhammad Waqas Sadaqat Ur Rehman 《Computers, Materials & Continua》 SCIE EI 2024年第9期4513-4542,共30页
The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research cha... The DNS over HTTPS(Hypertext Transfer Protocol Secure)(DoH)is a new technology that encrypts DNS traffic,enhancing the privacy and security of end-users.However,the adoption of DoH is still facing several research challenges,such as ensuring security,compatibility,standardization,performance,privacy,and increasing user awareness.DoH significantly impacts network security,including better end-user privacy and security,challenges for network security professionals,increasing usage of encrypted malware communication,and difficulty adapting DNS-based security measures.Therefore,it is important to understand the impact of DoH on network security and develop newprivacy-preserving techniques to allowthe analysis of DoH traffic without compromising user privacy.This paper provides an in-depth analysis of the effects of DoH on cybersecurity.We discuss various techniques for detecting DoH tunneling and identify essential research challenges that need to be addressed in future security studies.Overall,this paper highlights the need for continued research and development to ensure the effectiveness of DoH as a tool for improving privacy and security. 展开更多
关键词 DNS DNS over HTTPS CYBERSECURITY machine learning
下载PDF
Model Prediction and Optimal Control of Gas Oxygen Content for A Municipal Solid Waste Incineration Process
11
作者 Aijun Yan Tingting Gu 《Instrumentation》 2024年第1期101-111,共11页
In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an... In the municipal solid waste incineration process,it is difficult to effectively control the gas oxygen content by setting the air flow according to artificial experience.To address this problem,this paper proposes an optimization control method of gas oxygen content based on model predictive control.First,a stochastic configuration network is utilized to establish a prediction model of gas oxygen content.Second,an improved differential evolution algorithm that is based on parameter adaptive and t-distribution strategy is employed to address the set value of air flow.Finally,model predictive control is combined with the event triggering strategy to reduce the amount of computation and the controller's frequent actions.The experimental results show that the optimization control method proposed in this paper obtains a smaller degree of fluctuation in the air flow set value,which can ensure the tracking control performance of the gas oxygen content while reducing the amount of calculation. 展开更多
关键词 municipal solid waste incineration gas oxygen content stochastic configuration network model prediction differential evolution
下载PDF
Data cleaning method for the process of acid production with flue gas based on improved random forest 被引量:3
12
作者 Xiaoli Li Minghua Liu +2 位作者 Kang Wang Zhiqiang Liu Guihai Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期72-84,共13页
Acid production with flue gas is a complex nonlinear process with multiple variables and strong coupling.The operation data is an important basis for state monitoring,optimal control,and fault diagnosis.However,the op... Acid production with flue gas is a complex nonlinear process with multiple variables and strong coupling.The operation data is an important basis for state monitoring,optimal control,and fault diagnosis.However,the operating environment of acid production with flue gas is complex and there is much equipment.The data obtained by the detection equipment is seriously polluted and prone to abnormal phenomena such as data loss and outliers.Therefore,to solve the problem of abnormal data in the process of acid production with flue gas,a data cleaning method based on improved random forest is proposed.Firstly,an outlier data recognition model based on isolation forest is designed to identify and eliminate the outliers in the dataset.Secondly,an improved random forest regression model is established.Genetic algorithm is used to optimize the hyperparameters of the random forest regression model.Then the optimal parameter combination is found in the search space and the trend of data is predicted.Finally,the improved random forest data cleaning method is used to compensate for the missing data after eliminating abnormal data and the data cleaning is realized.Results show that the proposed method can accurately eliminate and compensate for the abnormal data in the process of acid production with flue gas.The method improves the accuracy of compensation for missing data.With the data after cleaning,a more accurate model can be established,which is significant to the subsequent temperature control.The conversion rate of SO_(2) can be further improved,thereby improving the yield of sulfuric acid and economic benefits. 展开更多
关键词 Acid production Data cleaning Isolation forest Random forest Data compensation
下载PDF
Robust Consensus Tracking Control of Uncertain Multi-Agent Systems With Local Disturbance Rejection 被引量:3
13
作者 Pan Yu Kang-Zhi Liu +3 位作者 Xudong Liu Xiaoli Li Min Wu Jinhua She 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期427-438,共12页
In this paper,a new distributed consensus tracking protocol incorporating local disturbance rejection is devised for a multi-agent system with heterogeneous dynamic uncertainties and disturbances over a directed graph... In this paper,a new distributed consensus tracking protocol incorporating local disturbance rejection is devised for a multi-agent system with heterogeneous dynamic uncertainties and disturbances over a directed graph.It is of two-degree-of-freedom nature.Specifically,a robust distributed controller is designed for consensus tracking,while a local disturbance estimator is designed for each agent without requiring the input channel information of disturbances.The condition for asymptotic disturbance rejection is derived.Moreover,even when the disturbance model is not exactly known,the developed method also provides good disturbance-rejection performance.Then,a robust stabilization condition with less conservativeness is derived for the whole multi-agent system.Further,a design algorithm is given.Finally,comparisons with the conventional one-degree-of-freedombased distributed disturbance-rejection method for mismatched disturbances and the distributed extended-state observer for matched disturbances validate the developed method. 展开更多
关键词 Directed graph distributed control disturbance rejection dynamic uncertainties multi-agent systems robust control
下载PDF
A machine learning approach for accelerated design of magnesium alloys. Part A:Alloy data and property space 被引量:2
14
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3620-3633,共14页
Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more i... Typically, magnesium alloys have been designed using a so-called hill-climbing approach, with rather incremental advances over the past century. Iterative and incremental alloy design is slow and expensive, but more importantly it does not harness all the data that exists in the field. In this work, a new approach is proposed that utilises data science and provides a detailed understanding of the data that exists in the field of Mg-alloy design to date. In this approach, first a consolidated alloy database that incorporates 916 datapoints was developed from the literature and experimental work. To analyse the characteristics of the database, alloying and thermomechanical processing effects on mechanical properties were explored via composition-process-property matrices. An unsupervised machine learning(ML) method of clustering was also implemented, using unlabelled data, with the aim of revealing potentially useful information for an alloy representation space of low dimensionality. In addition, the alloy database was correlated to thermodynamically stable secondary phases to further understand the relationships between microstructure and mechanical properties. This work not only introduces an invaluable open-source database, but it also provides, for the first-time data, insights that enable future accelerated digital Mg-alloy design. 展开更多
关键词 MAGNESIUM Alloy design Mg-alloy database Data analysis Data visualisation Unsupervised machine learning
下载PDF
A machine learning approach for accelerated design of magnesium alloys.Part B: Regression and property prediction 被引量:2
15
作者 M.Ghorbani M.Boley +1 位作者 P.N.H.Nakashima N.Birbilis 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4197-4205,共9页
Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two... Machine learning(ML) models provide great opportunities to accelerate novel material development, offering a virtual alternative to laborious and resource-intensive empirical methods. In this work, the second of a two-part study, an ML approach is presented that offers accelerated digital design of Mg alloys. A systematic evaluation of four ML regression algorithms was explored to rationalise the complex relationships in Mg-alloy data and to capture the composition-processing-property patterns. Cross-validation and hold-out set validation techniques were utilised for unbiased estimation of model performance. Using atomic and thermodynamic properties of the alloys, feature augmentation was examined to define the most descriptive representation spaces for the alloy data. Additionally, a graphical user interface(GUI) webtool was developed to facilitate the use of the proposed models in predicting the mechanical properties of new Mg alloys. The results demonstrate that random forest regression model and neural network are robust models for predicting the ultimate tensile strength and ductility of Mg alloys, with accuracies of ~80% and 70% respectively. The developed models in this work are a step towards high-throughput screening of novel candidates for target mechanical properties and provide ML-guided alloy design. 展开更多
关键词 Magnesium alloys Digital alloy design Supervised machine learning Regression models Prediction performance
下载PDF
Prediction of NO_(x)concentration using modular long short-term memory neural network for municipal solid waste incineration 被引量:2
16
作者 Haoshan Duan Xi Meng +1 位作者 Jian Tang Junfei Qiao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第4期46-57,共12页
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis... Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network. 展开更多
关键词 Municipal solid waste incineration NO_(x)concentration prediction Modular neural network Model
下载PDF
Detection of Copy-Move Forgery in Digital Images Using Singular Value Decomposition 被引量:1
17
作者 Zaid Nidhal Khudhair Farhan Mohamed +2 位作者 Amjad Rehman Tanzila Saba Saeed Ali bahaj 《Computers, Materials & Continua》 SCIE EI 2023年第2期4135-4147,共13页
This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding... This paper presents an improved approach for detecting copy-move forgery based on singular value decomposition(SVD).It is a block-based method where the image is scanned from left to right and top to down by a sliding window with a determined size.At each step,the SVD is determined.First,the diagonal matrix’s maximum value(norm)is selected(representing the scaling factor for SVD and a fixed value for each set of matrix elements even when rotating thematrix or scaled).Then,the similar norms are grouped,and each leading group is separated into many subgroups(elements of each subgroup are neighbors)according to 8-adjacency(the subgroups for each leading group must be far from others by a specific distance).After that,a weight is assigned for each subgroup to classify the image as forgery or not.Finally,the F1 score of the proposed system is measured,reaching 99.1%.This approach is robust against rotation,scaling,noisy images,and illumination variation.It is compared with other similarmethods and presents very promised results. 展开更多
关键词 Forgery image forensic image processing region duplication SVD transformation technological development
下载PDF
Optimizing Fully Convolutional Encoder-Decoder Network for Segmentation of Diabetic Eye Disease
18
作者 Abdul Qadir Khan Guangmin Sun +2 位作者 Yu Li Anas Bilal Malik Abdul Manan 《Computers, Materials & Continua》 SCIE EI 2023年第11期2481-2504,共24页
In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparamete... In the emerging field of image segmentation,Fully Convolutional Networks(FCNs)have recently become prominent.However,their effectiveness is intimately linked with the correct selection and fine-tuning of hyperparameters,which can often be a cumbersome manual task.The main aim of this study is to propose a more efficient,less labour-intensive approach to hyperparameter optimization in FCNs for segmenting fundus images.To this end,our research introduces a hyperparameter-optimized Fully Convolutional Encoder-Decoder Network(FCEDN).The optimization is handled by a novel Genetic Grey Wolf Optimization(G-GWO)algorithm.This algorithm employs the Genetic Algorithm(GA)to generate a diverse set of initial positions.It leverages Grey Wolf Optimization(GWO)to fine-tune these positions within the discrete search space.Testing on the Indian Diabetic Retinopathy Image Dataset(IDRiD),Diabetic Retinopathy,Hypertension,Age-related macular degeneration and Glacuoma ImageS(DR-HAGIS),and Ocular Disease Intelligent Recognition(ODIR)datasets showed that the G-GWO method outperformed four other variants of GWO,GA,and PSO-based hyperparameter optimization techniques.The proposed model achieved impressive segmentation results,with accuracy rates of 98.5%for IDRiD,98.7%for DR-HAGIS,and 98.4%,98.8%,and 98.5%for different sub-datasets within ODIR.These results suggest that the proposed hyperparameter-optimized FCEDN model,driven by the G-GWO algorithm,is more efficient than recent deep-learning models for image segmentation tasks.It thereby presents the potential for increased automation and accuracy in the segmentation of fundus images,mitigating the need for extensive manual hyperparameter adjustments. 展开更多
关键词 Diabetic eye disease image segmentation deep learning artificial intelligence grey wolf optimization FCN CNN
下载PDF
Analysis and Optimization of Validation Procedure in Blockchain-Enhanced Wireless Resource Sharing and Transactions
19
作者 Enyu Du Yang Gao +3 位作者 Wenjun Wu Zhaoxin Yang Yufeng Yin Pengbo Si 《China Communications》 SCIE CSCD 2023年第10期245-261,共17页
To ensure the security of resource and intelligence sharing in 6G,blockchain has been widely adopted in wireless communications and applications.Although blockchain can ensure the traceability and non-tamperability of... To ensure the security of resource and intelligence sharing in 6G,blockchain has been widely adopted in wireless communications and applications.Although blockchain can ensure the traceability and non-tamperability of data in the concatenated blocks,it cannot guarantee the honest behaviors of users in the application before the generation of transactions.Thus,additional technologies are required to ensure that the source of blockchain data is reliable.In this paper,the detailed procedure is designed for the application-oriented task validation in the blockchainenhanced computing resource sharing and transactions in ultra dense networks(UDN).The corresponding queuing model is built and analyzed with the consideration of the wireless re-transmission and the probability of malicious deception by users.Based on the analysis results,the UDN deployment is optimized to save network cost while ensuring latency performance.Numerical results verify our analysis,and the optimized system deployment including the number and service capacities of both base stations and mobile edge computing(MEC)servers are also given with various system settings. 展开更多
关键词 blockchain queuing theory wireless resource sharing validation procedure
下载PDF
Multivariable identification of membrane fouling based on compacted cascade neural network
20
作者 Kun Ren Zheng Jiao +1 位作者 Xiaolong Wu Honggui Han 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第1期37-45,共9页
The membrane fouling phenomenon,reflected with various fouling characterization in the membrane bioreactor(MBR)process,is so complicated to distinguish.This paper proposes a multivariable identification model(MIM)base... The membrane fouling phenomenon,reflected with various fouling characterization in the membrane bioreactor(MBR)process,is so complicated to distinguish.This paper proposes a multivariable identification model(MIM)based on a compacted cascade neural network to identify membrane fouling accurately.Firstly,a multivariable model is proposed to calculate multiple indicators of membrane fouling using a cascade neural network,which could avoid the interference of the overlap inputs.Secondly,an unsupervised pretraining algorithm was developed with periodic information of membrane fouling to obtain the compact structure of MIM.Thirdly,a hierarchical learning algorithm was proposed to update the parameters of MIM for improving the identification accuracy online.Finally,the proposed model was tested in real plants to evaluate its efficiency and effectiveness.Experimental results have verified the benefits of the proposed method. 展开更多
关键词 Membrane fouling PERMEABILITY Cascade neural networks Model PREDICTION
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部