Stand-level diversity after natural disturbance can potentially differ across a large, contiguous forest region despite being dominated by the same canopy species throughout as differences in disturbance types and loc...Stand-level diversity after natural disturbance can potentially differ across a large, contiguous forest region despite being dominated by the same canopy species throughout as differences in disturbance types and local site conditions can regulate species distribution. Our main objective was to examine the relative importance of natural disturbances (spruce budworm (Choristoneura fumiferana) outbreak, windthrow, and their interaction) and local site factors (climate, physiography, and stand structure and composition variables) on woody vegetation diversity among three, physiographically distinct locations across a large, contiguous forest region. Seventy-six Abies balsamea-Betula spp. stands affected by natural disturbance were compared and analysed using canonical ordination methods, diversity indices, and ANOVA. Different combinations of factors were important for vegetation re-establishment at each location. Differences in alpha (α), beta (β), gamma (γ), Shannon’s H’, and evenness (J) diversity indices were observed among locations across the study region. Our findings indicate that while certain processes are important for maintaining canopy dominance by Abies balsamea and Betula spp. throughout the region, different combinations of factors were important for creating variation in woody species diversity among locations that resulted in greater woody species diversity at the regional scale.展开更多
We prove a new version of the Holevo bound employing the Hilbert-Schmidt norm instead of the Kullback-Leibler divergence. Suppose Alice is sending classical information to Bob by using a quantum channel while Bob is p...We prove a new version of the Holevo bound employing the Hilbert-Schmidt norm instead of the Kullback-Leibler divergence. Suppose Alice is sending classical information to Bob by using a quantum channel while Bob is performing some projective measurements. We bound the classical mutual information in terms of the Hilbert-Schmidt norm by its quantum Hilbert-Schmidt counterpart. This constitutes a Holevo-type upper bound on the classical information transmission rate via a quantum channel. The resulting inequality is rather natural and intuitive relating classical and quantum expressions using the same measure.展开更多
文摘Stand-level diversity after natural disturbance can potentially differ across a large, contiguous forest region despite being dominated by the same canopy species throughout as differences in disturbance types and local site conditions can regulate species distribution. Our main objective was to examine the relative importance of natural disturbances (spruce budworm (Choristoneura fumiferana) outbreak, windthrow, and their interaction) and local site factors (climate, physiography, and stand structure and composition variables) on woody vegetation diversity among three, physiographically distinct locations across a large, contiguous forest region. Seventy-six Abies balsamea-Betula spp. stands affected by natural disturbance were compared and analysed using canonical ordination methods, diversity indices, and ANOVA. Different combinations of factors were important for vegetation re-establishment at each location. Differences in alpha (α), beta (β), gamma (γ), Shannon’s H’, and evenness (J) diversity indices were observed among locations across the study region. Our findings indicate that while certain processes are important for maintaining canopy dominance by Abies balsamea and Betula spp. throughout the region, different combinations of factors were important for creating variation in woody species diversity among locations that resulted in greater woody species diversity at the regional scale.
文摘We prove a new version of the Holevo bound employing the Hilbert-Schmidt norm instead of the Kullback-Leibler divergence. Suppose Alice is sending classical information to Bob by using a quantum channel while Bob is performing some projective measurements. We bound the classical mutual information in terms of the Hilbert-Schmidt norm by its quantum Hilbert-Schmidt counterpart. This constitutes a Holevo-type upper bound on the classical information transmission rate via a quantum channel. The resulting inequality is rather natural and intuitive relating classical and quantum expressions using the same measure.