The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to impr...The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.展开更多
The Dahongshan Group,situated at the southwestern margin of the Yangtze Block,represents a geological unit characterized by relatively high-grade metamorphism in the region.This paper investigates the garnet-biotite s...The Dahongshan Group,situated at the southwestern margin of the Yangtze Block,represents a geological unit characterized by relatively high-grade metamorphism in the region.This paper investigates the garnet-biotite schist from the Laochanghe Formation of the Dahongshan Group,employing an integrated approach that includes petrological analysis,phase equilibrium modeling,and zircon U-Pb dating.The schist is mainly composed of garnet,biotite,plagioclase,quartz,rutile,and ilmenite.Phase equilibrium modeling revealed the peak metamorphic conditions of 8-9 kbar and 635-675°C.By further integrating the prograde metamorphic profile of garnet and geothermobarometric results,a clockwise P-T metamorphic evolution path is constructed,which includes an increase in temperature and pressure during the prograde stage.LA-ICP-MS zircon U-Pb dating and zircon Ti thermometry constrains the post-peak metamorphic age of 831.2±7.2 Ma.Integrated with previously reported results,it is revealed that the southwestern margin of the Yangtze Block experienced a large-scale regional metamorphism during the Neoproterozoic(890-750 Ma),which is related to the collisional orogenic process.This may be associated with the late-stage assembly of the Rodinia supercontinent or with local compression and subduction processes during the breakup of the Rodinia supercontinent.展开更多
Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new su...Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.展开更多
The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A ser...The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters.展开更多
The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geop...The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.展开更多
Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive st...Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.展开更多
This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through mic...This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.展开更多
The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the...The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.展开更多
The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are stri...The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.展开更多
The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with G...The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with GPS field collected data in the area of Xiaowan-Dachaoshan Reservoirs of Lancangjiang River cascaded Hydropower Area. Consequently, the land-cover is divided into five subclasses, namely water, paddy field and wetland, bare dryland and sparse shrub, secondary forest and density forest. The result showed that the areas of bare land, upland and secondary forest decreased in 1988-1996, whereas from 1996 to 2000, water body and density forest keep invariability while the areas of paddy field and wetland, bare dryland and sparse scrub increasing and the area of secondary forest decrease; Features of reciprocal transformation between density forest and other type of land-cover had two points, i.e. secondary forest, bare dryland and sparse shrub converted to density forest; and density forest converted to secondary forest and paddy field and wetland. It reflects the dynamic variation of density forest; the area which slope less than 8° and greater than 15° shows bigger variation, however, less change in 8°-15°.展开更多
The adsorption of sodium oleate(NaOL)at the microfine hematite/aqueous solution interface was investigated in this paper.Experimental research indicated that negative effects stemmed from the dissolution of the microf...The adsorption of sodium oleate(NaOL)at the microfine hematite/aqueous solution interface was investigated in this paper.Experimental research indicated that negative effects stemmed from the dissolution of the microfine hematite(D50=19.21μm)could be effectively eliminated via the appropriate dosage of NaOL at alkali pH conditions.Solution chemistry calculation and adsorption test results indicated that RCOOand(RCOO)_(2)^(2-) ions were responsible for microfine hematite flotation at pH 8.2.Zeta potential and FTIR measurements confirmed the co-adsorption of molecular and ionic oleate species occurred at pH 8.2.X-ray photoelectron spectroscopy(XPS)results further indicated that oleate species interacted with hematite surfaces mainly through chemisorption,giving rise to molecule/colloid formation of oleate and Fe―OL complex compound.Time-of-flight secondary ion mass spectrometry(ToF-SIMS)results demonstrated that oleate species adsorbed onto the hematite surfaces with a thickness of a few nanometers.Furthermore,the normalized peak intensity of C4H7+ions on the hematite sample at pH 8.2 increased remarkably comparing with corresponding result of hematite sample at pH 6.8.The new findings of the present study well revealed the dissolution of microfine hematite and the pH effects on the hematite flotation,as well as the adsorption characteristics of oleate species.展开更多
Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77...Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering.展开更多
Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump.Complex loop-pipe experiments and fluid-solid coupling-based simulations were conducted.The s...Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump.Complex loop-pipe experiments and fluid-solid coupling-based simulations were conducted.The scanning electron microscopy technique was also applied.Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network.The vertical downward-straight pipe-inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature.The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance.The correlation reached 96%.Particle distribution and interparticle forces affected flow resistance.Uniform particle states and weak interparticle forces were conducive to steady transport.Pulse pump pressure led to high flow resistance.It could improve pipe flow stability by increasing flow uniformity and particle motion stability.These results can contribute to safe and efficient paste filling.展开更多
The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated...The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.展开更多
In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs b...In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals.In this study,the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated.Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced,while the presence of the malachite supernatant increased the recovery of calcite.Dissolution and adsorption tests,along with zeta potential measurements,X-ray photoelectron spectroscopy,Fourier transform infrared spectrometry,and timeof-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface,which hindered the interaction of Na2S with malachite,thereby resulting in the insufficient adsorption of sodium isoamyl xanthate(NaIX)on the surface of malachite.By contrast,the Cu species in the malachite supernatant were adsorbed on the calcite surface,and they provided active sites for the subsequent adsorption of Na_(2)S and NaIX.展开更多
Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on...Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery.展开更多
The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedd...The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.展开更多
This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floata...This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floatability of chalcopyrite within pH range of 4.0–12.0.Zeta potential tests showed that the addition of PF induced the formation of more amounts of hydrophilic species on the surface of galena under an alkaline environment.Industrial grade O-isopropyl-N-ethyl thionocarbamate(IPETC)chemically adsorbed on the surface of the PF-treated chalcopyrite and galena after its addition.Contact angle measurements showed that with the addition of PF,the contact angle of the galena surface significantly decreased compared with the chalcopyrite surface.Localized electrochemical impedance spectroscopy(LEIS)tests showed that the addition of PF increased the impedance of the galena surface.X-ray photoelectron spectroscopy(XPS)analyses revealed that the formation of hydrophilic species,namely lead sulfite,lead hydroxide and ferric hydroxide,on the galena surface,decreased its floatability in the presence of PF,while the formation of hydrophobic species,namely copper disulfide and elemental sulfur,on the chalcopyrite surface,maintained its floatability.Finally,a descriptive model for the reaction of PF with chalcopyrite and galena was proposed.展开更多
Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric ac...Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed,and the efficient separation of galena and chalcopyrite was successfully realized.Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena.Meanwhile,the contact angle and floatability of corroded chalcopyrite remained almost unaffected.Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface,whereas the chalcopyrite surface remained unaltered.X-ray photoelectron spectroscopy results showed that the chemical state of S^(2-)on the surface of corroded galena was oxidized to SO_(4)^(2-).A layer of hydrophilic PbSO4was formed on the surface,leading to a sharp decrease in galena floatability.Meanwhile,new hydrophobic CuS_(2),CuS,and Cu_(1-x)Fe_(1-y)S_(2-z)species exhibiting good floatability were generated on the chalcopyrite surface.Finally,theoretical analysis results were further verified by corrosion–flotation separation experiments.The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity,corrosion temperature,and corrosion time.A novel approach has been outlined in this study,providing potential applications in the efficient separation of refractory copper–lead sulfide ore.展开更多
The Dulong deposit,located in the Laojunshan area of southeastern Yunnan,China,is an important polymetallic deposit due to its high reserves of tin,zinc,and indium.The occurrence state of indium is critical for unders...The Dulong deposit,located in the Laojunshan area of southeastern Yunnan,China,is an important polymetallic deposit due to its high reserves of tin,zinc,and indium.The occurrence state of indium is critical for understanding its supernormal enrichment mechanism.Previous studies investigated the occurrence state of indium(including the valence state)based on the indium content in sphalerite and the correlation between metal concentrations.However,more evidence is needed to better constrain indium occurrence at the micro-,nano-,or even atomic scale.In this study,EPMA-FIB-SEM-TEM and XPS techniques were employed to investigate the indium distribution characteristics and occurrence state in sphalerite from the Dulong Sn–Zn–In polymetallic deposit.The maximum concentration of indium in the indium-rich sphalerite samples is 0.37%,and the results of the EPMA analysis showed a relatively homogeneous distribution of indium in sphalerite.The FIB-SEM-TEM results demonstrated that the lattice stripes of sphalerite were periodically and continuously distributed at the nanoscale,confirming that sphalerite in the deposit was an excellent single crystal structure,and the peak heights of the various characteristic peaks of indium in the EDX spectra were relatively close to each other,with no distinct peaks of high indium content.In addition,the XPS results indicate that the element valence state of indium in sphalerite is In^(3+),and it combines with S^(2-)to form a bond.These results indicate that indium in sphalerite of the Dulong deposit is uniformly distributed at both the micro-and nanoscale,and there is no indium-independent mineral.In^(3+)enters the crystal lattice of sphalerite by replacing Zn2+in the form of isomorphic substitution.展开更多
基金supported by the Yunnan Science and Technology Leading Talent Project(No.202305AB350005)National Science Foundation for Young Scientists of China(No.51404118).
文摘The flotation of complex solid–liquid multiphase systems involve interactions among multiple components,the core problem facing flotation theory.Meanwhile,the combined use of multicomponent flotation reagents to improve mineral flotation has become an important issue in studies on the efficient use of refractory mineral resources.However,studying the flotation of complex solid–liquid systems is extremely difficult,and no systematic theory has been developed to date.In addition,the physical mechanism associated with combining reagents to improve the flotation effect has not been unified,which limits the development of flotation theory and the progress of flotation technology.In this study,we applied theoretical thermodynamics to a solid–liquid flotation system and used changes in the entropy and Gibbs free energy of the reagents adsorbed on the mineral surface to establish thermodynamic equilibrium equations that de-scribe interactions among various material components while also introducing adsorption equilibrium constants for the flotation reagents adsorbed on the mineral surface.The homogenization effect on the mineral surface in pulp solution was determined using the chemical potentials of the material components of the various mineral surfaces required to maintain balance.The flotation effect can be improved through synergy among multicomponent flotation reagents;its physical essence is the thermodynamic law that as the number of compon-ents of flotation reagents on the mineral surface increases,the surface adsorption entropy change increases,and the Gibbs free energy change of adsorption decreases.According to the results obtained using flotation thermodynamics theory,we established high-entropy flotation theory and a technical method in which increasing the types of flotation reagents adsorbed on the mineral surface,increasing the adsorption entropy change of the flotation reagents,decreasing the Gibbs free energy change,and improving the adsorption efficiency and stability of the flotation reagents improves refractory mineral flotation.
基金supported by the National Natural Science Foundation of China(Grant Nos.42162012,42072094)the Key Laboratory of Sanjiang Metallogeny and Resource Exploration and Utilization,Ministry of Natural Resources(Project No.ZRZYBSJSYS2022001).
文摘The Dahongshan Group,situated at the southwestern margin of the Yangtze Block,represents a geological unit characterized by relatively high-grade metamorphism in the region.This paper investigates the garnet-biotite schist from the Laochanghe Formation of the Dahongshan Group,employing an integrated approach that includes petrological analysis,phase equilibrium modeling,and zircon U-Pb dating.The schist is mainly composed of garnet,biotite,plagioclase,quartz,rutile,and ilmenite.Phase equilibrium modeling revealed the peak metamorphic conditions of 8-9 kbar and 635-675°C.By further integrating the prograde metamorphic profile of garnet and geothermobarometric results,a clockwise P-T metamorphic evolution path is constructed,which includes an increase in temperature and pressure during the prograde stage.LA-ICP-MS zircon U-Pb dating and zircon Ti thermometry constrains the post-peak metamorphic age of 831.2±7.2 Ma.Integrated with previously reported results,it is revealed that the southwestern margin of the Yangtze Block experienced a large-scale regional metamorphism during the Neoproterozoic(890-750 Ma),which is related to the collisional orogenic process.This may be associated with the late-stage assembly of the Rodinia supercontinent or with local compression and subduction processes during the breakup of the Rodinia supercontinent.
基金supported by Yunnan Fundamental Research Projects(No.202101BE070001-009)Yunnan Major Scientific and Technological Projects(No.202202AG050015)National Natural Science Foundation of China(No.51464029).
文摘Malachite is a common copper oxide mineral that is often enriched using the sulfidization-xanthate flotation method.Currently,the direct sulfidization method cannot yield copper concentrate products.Therefore,a new sulfidization flotation process was developed to promote the efficient recovery of malachite.In this study,Cu^(2+) was used as an activator to interact with the sample surface and increase its reaction sites,thereby strengthening the mineral sulfidization process and reactivity.Compared to single copper ion activation,the flota-tion effect of malachite significantly increased after stepwise Cu^(2+) activation.Zeta potential,X-ray photoelectron spectroscopy(XPS),time-of-flight secondary ion mass spectroscopy(ToF-SIMS),scanning electron microscopy and energy dispersive spectrometry(SEM-EDS),and atomic force microscopy(AFM)analysis results indicated that the adsorption of S species was significantly enhanced on the mineral surface due to the increase in active Cu sites after Cu^(2+) stepwise activation.Meanwhile,the proportion of active Cu-S spe-cies also increased,further improving the reaction between the sample surface and subsequent collectors.Fourier-transform infrared spec-troscopy(FT-IR)and contact angle tests implied that the xanthate species were easily and stably adsorbed onto the mineral surface after Cu^(2+) stepwise activation,thereby improving the hydrophobicity of the mineral surface.Therefore,the copper sites on the malachite sur-face after Cu^(2+) stepwise activation promote the reactivity of the mineral surface and enhance sulfidization flotation of malachite.
基金This work was financially supported by National Key Research and Development Program of China(Grant No.2022YFC2903903)National Natural Science Foundation of China(Grant No.52304132)Yunnan Major Scientific and Technological Projects(Grant No.202202AG050014).These support is gratefully acknowledged.
文摘The surrounding rock of underground space is always affected by external dynamic disturbance from the side position,such as blasting vibration from a stope at the same level or seismic waves from adjacent strata.A series of laboratory tests,numerical simulations and theoretical analyses were carried out in this study to disclose the sliding mechanism of roof rock blocks under lateral disturbance.Firstly,the experiments on trapezoidal key block under various clamping loads and disturbance were conducted,followed by numerical simulations using the fast Lagrangian analysis of continua(FLAC3D).Then,based on the conventional wave propagation model and the classical shear-slip constitutive model,a theoretical model was proposed to capture the relative displacement between blocks and the sliding displacement of the key block.The results indicate that the sliding displacement of the key block increased linearly with the disturbance energy and decreased exponentially with the clamping load when the key block was disturbed to slide(without instability).Meanwhile,when the key block was disturbed to fall,two types of instability process may appear as immediate type or delayed type.In addition,the propagation of stress waves in the block system exhibited obvious low-velocity and lowfrequency characteristics,resulting in the friction reduction effect appearing at the contact interface,which is the essential reason for the sliding of rock blocks.The results can be applied to practical underground engineering and provide valuable guidance for the early detection and prevention of rockfalling disasters.
基金Project(202202AG050010)supported by the Yunnan Major Scientific and Technological Projects,ChinaProject(202103AA080007)supported by the Key R&D Project of Science and Technology Department of Yunnan Province,ChinaProject(NECP2023-06)supported by the Open Project Fund of National Engineering and Technology Research Center for Development&Utilization of Phosphorous Resources,China。
文摘The long-term storage of phosphate tailings will occupy a large amount of land,pollute soil and groundwater,thus,it is crucial to achieve the harmless disposal of phosphate tailings.In this study,high-performance geopolymers with compressive strength of 38.8 MPa were prepared by using phosphate tailings as the main raw material,fly ash as the active silicon-aluminum material,and water glass as the alkaline activator.The solid content of phosphate tailings and fly ash was 60% and 40%,respectively,and the water-cement ratio was 0.22.The results of XRD,FTIR,SEM-EDS and XPS show that the reactivity of phosphate tailings with alkaline activator is weak,and the silicon-aluminum material can react with alkaline activator to form zeolite and gel,and encapsulate/cover the phosphate tailings to form a dense phosphate tailings-based geopolymer.During the formation of geopolymers,part of the aluminum-oxygen tetrahedron replaced the silicon-oxygen tetrahedron,causing the polycondensation reaction between geopolymers and increasing the strength of geopolymers.The leaching toxicity test results show that the geopolymer has a good solid sealing effect on heavy metal ions.The preparation of geopolymer from phosphate tailings is an important way to alleviate the storage pressure and realize the resource utilization of phosphate tailings.
基金This research was financially supported by the National Natural Science Foundation of China(Nos.51934003,52334004)Yunnan Innovation Team(No.202105AE 160023)+2 种基金Major Science and Technology Special Project of Yunnan Province,China(No.202102AF080001)Yunnan Major Scientific and Technological Projects,China(No.202202AG050014)Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area,MNR,and Yunnan Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area.
文摘Strength theory is the basic theory for calculating and designing the strength of engineering materials in civil,hydraulic,mechanical,aerospace,military,and other engineering disciplines.Therefore,the comprehensive study of the generalized nonlinear strength theory(GNST)of geomaterials has significance for the construction of engineering rock strength.This paper reviews the GNST of geomaterials to demonstrate the research status of nonlinear strength characteristics of geomaterials under complex stress paths.First,it systematically summarizes the research progress of GNST(classical and empirical criteria).Then,the latest research the authors conducted over the past five years on the GNST is introduced,and a generalized three-dimensional(3D)nonlinear Hoek‒Brown(HB)criterion(NGHB criterion)is proposed for practical applications.This criterion can be degenerated into the existing three modified HB criteria and has a better prediction performance.The strength prediction errors for six rocks and two in-situ rock masses are 2.0724%-3.5091%and 1.0144%-3.2321%,respectively.Finally,the development and outlook of the GNST are expounded,and a new topic about the building strength index of rock mass and determining the strength of in-situ engineering rock mass is proposed.The summarization of the GNST provides theoretical traceability and optimization for constructing in-situ engineering rock mass strength.
基金supported by the National Natural Science Foundation of China (No.52164022).
文摘This paper proposes luteolin(LUT)as a novel depressant for the flotation-based separation of scheelite and calcite in a sodium oleate(NaOL)system.The suitability of LUT as a calcite depressant is confirmed through micro-flotation testing.At pH=9,with LUT concentration of 50 mg·L^(-1) and NaOL concentration of 50 mg·L^(-1),scheelite recovery reaches 80.3%.Calcite,on the other hand,exhibits a recovery rate of 17.6%,indicating a significant difference in floatability between the two minerals.Subsequently,the surface modifica-tions of scheelite and calcite following LUT treatment are characterized using adsorption capacity testing,Zeta potential analysis,Fourier transform infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),and atomic force microscopy(AFM).The study in-vestigates the selective depressant mechanism of LUT on calcite.Adsorption capacity testing and Zeta potential analysis demonstrate sub-stantial absorption of LUT on the surface of calcite,impeding the further adsorption of sodium oleate,while its impact on scheelite is min-imal.FT-IR and XPS analyses reveal the selective adsorption of LUT onto the surface of calcite,forming strong chemisorption bonds between the hydroxyl group and calcium ions present.AFM directly illustrates the distinct adsorption densities of LUT on the two miner-al types.Consequently,LUT can effectively serve as a depressant for calcite,enabling the successful separation of scheelite and calcite.
基金financially supported by the Yunnan Major Scientific and Technological Projects,China (No.202202AG050015)the National Natural Science Foundation of China (No.51464029)。
文摘The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants.In the flotation system of Cu–Fe sulfide minerals,depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector.This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity.These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds),natural polysaccharides (starch,dextrin,konjac glucomannan,and galactomannan),modified polymers (carboxymethyl cellulose,polyacrylamide,lignosulfonate,and tricarboxylate sodium starch),organic acids (polyglutamic acid,sodium humate,tannic acid,pyrogallic acid,salicylic acid,and lactic acid),sodium dimethyl dithiocarbamate,and diethylenetriamine.The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed.The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed.Additionally,the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized.Finally,several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
基金This research was funded by the National Natural Science Foundation of China(No.41862007)the Key Disciplines Construction of Kunming University of Science and Technology(No.14078384)the Yunnan Ten Thousand Talents Plan Young&Elite Talents Project(YNWR-QNBJ-2018-093)。
文摘The Yangla Cu skarn deposit is located in the central part of the Jinshajiang Suture Zone,southwest China,with a total reserve of 150 Mt Cu@1.03%.The newly discovered antimony orebodies at the depth of Yangla are strictly controlled by the stratum,structure,and lithology,which are lenticular and vein-like within the marble fracture zone,which can provide a window into multistage miner-alization and ore genesis at Yangla.Mineralization can be divided into three types,Cu–Pb–Zn(skarn)pyrite,galena,and sphalerite,Cu(porphyry)chalcopyrite and pyrite,and Sb(hydrothermal)stibnite and pyrite.The mineral assem-blages were stibnite+pyrite+calcite+quartz±minor scheelite in antimony ores.This study presents quantitative measurements of the trace element compositions of pyrite and stibnite from the Yangla antimony ores.Analysis of pyrite with electron probe microanalysis(EPMA)showed enrichment in Co,Ni,Sb,As,and Mo,and deficit in its S and Fe contents when compared to the stoichiometric con-centrations of S and Fe in pyrite.The Sb-related pyrite may belong to sedimentary-reworked genesis and may be modi-fied by hydrothermalfluids,thereby presenting a certain dif-ference(i.e.,crystal morphology,texture,and chemical com-position)compared to the skarn and porphyry Cu-related pyrite in the Yangla Cu skarn deposit.Analysis of stibnite with EPMA and inductively coupled plasma-mass spectrom-etry showed enrichment in As,Pb,Sn,Pb,Cu,and Zn,and presented much higher Sb contents and slightly lower S con-tents when compared to the stoichiometric concentrations of Sb and S in stibnite.Statistical analysis of the stibnite trace elements showed correlations for the elemental pairs Cu–Pb,As–Sb,and Sn–Pb,and the coupled substitution equations Sb^(3+)↔Cu^(+)+Pb^(2+),Sb^(3+)↔As^(3+),and Sn^(2+)↔Pb^(2+)may be the major factors governed the incorporating Cu,Pb,As and Sn within the stibnite.Moreover,this study preliminary shows that the antimony mineralization may belong to a car-bonate replacement hydrothermal genesis at Yangla.
文摘The analysis of the 3 stages' (1988,1996,2000) variation of land-cover is performed according to Thematic Mapper (TM) and Enhancement Thematic Mapper(ETM) satellite image by combining ground GIS database with GPS field collected data in the area of Xiaowan-Dachaoshan Reservoirs of Lancangjiang River cascaded Hydropower Area. Consequently, the land-cover is divided into five subclasses, namely water, paddy field and wetland, bare dryland and sparse shrub, secondary forest and density forest. The result showed that the areas of bare land, upland and secondary forest decreased in 1988-1996, whereas from 1996 to 2000, water body and density forest keep invariability while the areas of paddy field and wetland, bare dryland and sparse scrub increasing and the area of secondary forest decrease; Features of reciprocal transformation between density forest and other type of land-cover had two points, i.e. secondary forest, bare dryland and sparse shrub converted to density forest; and density forest converted to secondary forest and paddy field and wetland. It reflects the dynamic variation of density forest; the area which slope less than 8° and greater than 15° shows bigger variation, however, less change in 8°-15°.
基金supported by the Natural Science Foundation of China (No. 52164021)the Natural Science Foundation of Yunnan Province (No. 2019FB078)
文摘The adsorption of sodium oleate(NaOL)at the microfine hematite/aqueous solution interface was investigated in this paper.Experimental research indicated that negative effects stemmed from the dissolution of the microfine hematite(D50=19.21μm)could be effectively eliminated via the appropriate dosage of NaOL at alkali pH conditions.Solution chemistry calculation and adsorption test results indicated that RCOOand(RCOO)_(2)^(2-) ions were responsible for microfine hematite flotation at pH 8.2.Zeta potential and FTIR measurements confirmed the co-adsorption of molecular and ionic oleate species occurred at pH 8.2.X-ray photoelectron spectroscopy(XPS)results further indicated that oleate species interacted with hematite surfaces mainly through chemisorption,giving rise to molecule/colloid formation of oleate and Fe―OL complex compound.Time-of-flight secondary ion mass spectrometry(ToF-SIMS)results demonstrated that oleate species adsorbed onto the hematite surfaces with a thickness of a few nanometers.Furthermore,the normalized peak intensity of C4H7+ions on the hematite sample at pH 8.2 increased remarkably comparing with corresponding result of hematite sample at pH 6.8.The new findings of the present study well revealed the dissolution of microfine hematite and the pH effects on the hematite flotation,as well as the adsorption characteristics of oleate species.
基金by the National Natural Science Foundation of China(No.52174114)the State Key Laboratory of Hydroscience and Engineering of Tsinghua University(No.61010101218).
文摘Slope stability prediction research is a complex non-linear system problem.In carrying out slope stability prediction work,it often encounters low accuracy of prediction models and blind data preprocessing.Based on 77 field cases,5 quantitative indicators are selected to improve the accuracy of prediction models for slope stability.These indicators include slope angle,slope height,internal friction angle,cohesion and unit weight of rock and soil.Potential data aggregation in the prediction of slope stability is analyzed and visualized based on Six-dimension reduction methods,namely principal components analysis(PCA),Kernel PCA,factor analysis(FA),independent component analysis(ICA),non-negative matrix factorization(NMF)and t-SNE(stochastic neighbor embedding).Combined with classic machine learning methods,7 prediction models for slope stability are established and their reliabilities are examined by random cross validation.Besides,the significance of each indicator in the prediction of slope stability is discussed using the coefficient of variation method.The research results show that dimension reduction is unnecessary for the data processing of prediction models established in this paper of slope stability.Random forest(RF),support vector machine(SVM)and k-nearest neighbour(KNN)achieve the best prediction accuracy,which is higher than 90%.The decision tree(DT)has better accuracy which is 86%.The most important factor influencing slope stability is slope height,while unit weight of rock and soil is the least significant.RF and SVM models have the best accuracy and superiority in slope stability prediction.The results provide a new approach toward slope stability prediction in geotechnical engineering.
基金financially supported by the National Natural Science Foundation of China (No.52074137)Yunnan Fundamental Research Projects (No.202201AT070151)+1 种基金Yunnan Major Scientific and Technological Projects (No.202202AG050014)Yunnan Innovation Team (No.202105AE160023)。
文摘Paste flow patterns and microscopic particle structures were studied in a pressurized environment generated by a pulse pump.Complex loop-pipe experiments and fluid-solid coupling-based simulations were conducted.The scanning electron microscopy technique was also applied.Results revealed that flow resistance is closely related to pipeline curvature and angle in a complex pipe network.The vertical downward-straight pipe-inclined downward combination was adopted to effectively reduce the loss in resistance along with reducing the number of bends or increasing the radius of bend curvature.The maximum velocity ratio and velocity offset values could quantitatively characterize the influences of different pipeline layouts on the resistance.The correlation reached 96%.Particle distribution and interparticle forces affected flow resistance.Uniform particle states and weak interparticle forces were conducive to steady transport.Pulse pump pressure led to high flow resistance.It could improve pipe flow stability by increasing flow uniformity and particle motion stability.These results can contribute to safe and efficient paste filling.
基金supported by Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)National Natural Science Foundation of China(No.51504109)。
文摘The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.
基金financially supported by Yunnan Fundamental Research Projects (No.202101BE070001-009)National Natural Science Foundation of China (No.51464029)。
文摘In general,malachite is recovered via sulfidization–xanthate flotation,although many unsatisfactory flotation indexes are frequently obtained as a result of the presence of associated calcite.This phenomenon occurs because the dissolved components of malachite and calcite affect the flotation behavior of both minerals.In this study,the effect of the dissolved components derived from malachite and calcite on the flotation behavior and surface characteristics of both minerals was investigated.Flotation tests indicated that malachite recovery decreased when the calcite supernatant was introduced,while the presence of the malachite supernatant increased the recovery of calcite.Dissolution and adsorption tests,along with zeta potential measurements,X-ray photoelectron spectroscopy,Fourier transform infrared spectrometry,and timeof-flight secondary ion mass spectrometry demonstrated that the Ca species in the calcite supernatant were adsorbed on the malachite surface,which hindered the interaction of Na2S with malachite,thereby resulting in the insufficient adsorption of sodium isoamyl xanthate(NaIX)on the surface of malachite.By contrast,the Cu species in the malachite supernatant were adsorbed on the calcite surface,and they provided active sites for the subsequent adsorption of Na_(2)S and NaIX.
基金supported by National Natural Science Foundation of China(No.52264026)Yunnan Fundamental Research Projects(Nos.202301AW070018,and 202101BE070001-009)。
文摘Copper ions(Cu^(2+))are usually added to activate the sulfidized surface of zinc oxide minerals to enhance xanthate attachment using sulfidization xanthate flotation technology.The adsorption of Cu^(2+)and xanthate on the sulfidized surface was investigated in various systems,and its effect on the surface hydrophobicity and flotation performance was revealed by multiple analytical methods and experiments.X-ray photoelectron spectroscopy(XPS)and time-of-flight secondary ion mass spectrometry(To F-SIMS)characterization demonstrated that the adsorption of Cu^(2+)on sulfidized smithsonite surfaces increased the active Cu—S content,regardless of treatment in any activation system.The sulfidized surface pretreated with NH_(4)^(+)-Cu^(2+)created favorable conditions for the adsorption of more Cu^(2+),significantly enhancing the smithsonite reactivity.Zeta potential determination,ultraviolet(UV)-visible spectroscopy,Fourier transform-infrared(FT-IR)measurements,and contact angle detection showed that xanthate was chemically adsorbed on the sulfidized surface,and its adsorption capacity in various systems was illustrated from qualitative and quantitative aspects.In comparison to the Na2S–Cu^(2+)and Cu^(2+)–Na2S–Cu^(2+)systems,xanthate exhibited a higher adsorption capacity on sulfidized smithsonite surfaces in NH_(4)^(+)-Cu^(2+)–Na2S–Cu^(2+)system.Hence,activation with Cu^(2+)–NH4+synergistic species prior to sulfidization significantly enhanced the mineral surface hydrophobicity,thereby increasing its flotation recovery.
基金financially supported by the National Natural Science Foundation of China (No.51934003)the Major Science and Technology Special Project of Yunnan Province,China(Nos.202102AF080001 and 202102AG050024)。
文摘The anisotropy induced by rock bedding structures is usually manifested in the mechanical behaviors and failure modes of rocks.Brazilian tests are conducted for seven groups of shale specimens featuring different bedding angles. Acoustic emission (AE) and digital image correlation (DIC) technologies are used to monitor the in-situ failure of the specimens. Furthermore, the crack morphology of damaged samples is observed through scanning electron microscopy (SEM). Results reveal the structural dependence on the tensile mechanical behavior of shales. The shale disk exhibits compression in the early stage of the experiment with varying locations and durations. The location of the compression area moves downward and gradually disappears when the bedding angle increases. The macroscopic failure is well characterized by AE event location results, and the dominant frequency distribution is related to the bedding angle. The b-value is found to be stress-dependent.The crack turning angle between layers and the number of cracks crossing the bedding both increase with the bedding angle, indicating competition between crack propagations. SEM results revealed that the failure modes of the samples can be classified into three types:tensile failure along beddings with shear failure of the matrix, ladder shear failure along beddings with tensile failure of the matrix, and shear failure along multiple beddings with tensile failure of the matrix.
基金supported by the National Natural Science Foun-dation of China(Nos.51964027 and 52264028)Basic Research Project for High-level Talents of Yunnan Province(No.KKS2202152011)open foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF1602).
文摘This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floatability of chalcopyrite within pH range of 4.0–12.0.Zeta potential tests showed that the addition of PF induced the formation of more amounts of hydrophilic species on the surface of galena under an alkaline environment.Industrial grade O-isopropyl-N-ethyl thionocarbamate(IPETC)chemically adsorbed on the surface of the PF-treated chalcopyrite and galena after its addition.Contact angle measurements showed that with the addition of PF,the contact angle of the galena surface significantly decreased compared with the chalcopyrite surface.Localized electrochemical impedance spectroscopy(LEIS)tests showed that the addition of PF increased the impedance of the galena surface.X-ray photoelectron spectroscopy(XPS)analyses revealed that the formation of hydrophilic species,namely lead sulfite,lead hydroxide and ferric hydroxide,on the galena surface,decreased its floatability in the presence of PF,while the formation of hydrophobic species,namely copper disulfide and elemental sulfur,on the chalcopyrite surface,maintained its floatability.Finally,a descriptive model for the reaction of PF with chalcopyrite and galena was proposed.
基金financially supported by the National Natural Science Foundation of China(No.52064027)Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)。
文摘Galena(PbS)and chalcopyrite(CuFeS_(2))are sulfide minerals that exhibit good floatability characteristics.Thus,efficiently separating them via common flotation is challenging.Herein,a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed,and the efficient separation of galena and chalcopyrite was successfully realized.Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena.Meanwhile,the contact angle and floatability of corroded chalcopyrite remained almost unaffected.Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface,whereas the chalcopyrite surface remained unaltered.X-ray photoelectron spectroscopy results showed that the chemical state of S^(2-)on the surface of corroded galena was oxidized to SO_(4)^(2-).A layer of hydrophilic PbSO4was formed on the surface,leading to a sharp decrease in galena floatability.Meanwhile,new hydrophobic CuS_(2),CuS,and Cu_(1-x)Fe_(1-y)S_(2-z)species exhibiting good floatability were generated on the chalcopyrite surface.Finally,theoretical analysis results were further verified by corrosion–flotation separation experiments.The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity,corrosion temperature,and corrosion time.A novel approach has been outlined in this study,providing potential applications in the efficient separation of refractory copper–lead sulfide ore.
基金financially supported by the National Nature Science Foundation of China(42072094,42162012)。
文摘The Dulong deposit,located in the Laojunshan area of southeastern Yunnan,China,is an important polymetallic deposit due to its high reserves of tin,zinc,and indium.The occurrence state of indium is critical for understanding its supernormal enrichment mechanism.Previous studies investigated the occurrence state of indium(including the valence state)based on the indium content in sphalerite and the correlation between metal concentrations.However,more evidence is needed to better constrain indium occurrence at the micro-,nano-,or even atomic scale.In this study,EPMA-FIB-SEM-TEM and XPS techniques were employed to investigate the indium distribution characteristics and occurrence state in sphalerite from the Dulong Sn–Zn–In polymetallic deposit.The maximum concentration of indium in the indium-rich sphalerite samples is 0.37%,and the results of the EPMA analysis showed a relatively homogeneous distribution of indium in sphalerite.The FIB-SEM-TEM results demonstrated that the lattice stripes of sphalerite were periodically and continuously distributed at the nanoscale,confirming that sphalerite in the deposit was an excellent single crystal structure,and the peak heights of the various characteristic peaks of indium in the EDX spectra were relatively close to each other,with no distinct peaks of high indium content.In addition,the XPS results indicate that the element valence state of indium in sphalerite is In^(3+),and it combines with S^(2-)to form a bond.These results indicate that indium in sphalerite of the Dulong deposit is uniformly distributed at both the micro-and nanoscale,and there is no indium-independent mineral.In^(3+)enters the crystal lattice of sphalerite by replacing Zn2+in the form of isomorphic substitution.