The present experiment was conducted to determine the effects of Molasses-Urea Supplementation (MUS) on weight gain, ruminal fermentation and major microbial populations in sheep on a winter grazing regime in Inner ...The present experiment was conducted to determine the effects of Molasses-Urea Supplementation (MUS) on weight gain, ruminal fermentation and major microbial populations in sheep on a winter grazing regime in Inner Mongolia. Total 40 sheep, allowed free consumption of MUS after grazing, served as a treatment group, while 30 sheep, fed only by pasture grazing, served as a control group. Ruminal fermentation parameters, consisted of pH, Bacterial Crude Protein (BCP) and ammonia nitrogen (NH3-N) were measured. In addition, numbers of five symbiotic bacteria were investigated. The results showed as follows: the average daily weight gain, concentration of NH3-N and numbers of protozoa were significantly higher (p〈0.05) in the treatment group than those in the control group. Contrastingly, no significant difference was found in BCP concentration and pH between the two groups. At the end of the experiment, the populations of Selenomonas ruminantium, Anaerovibrio lipolytica, Fibrobacter succinogenes, Ruminococcus flaveciens and Ruminococcus albus in the treatment group were significantly higher than those of the control group (p〈0.05). These results demonstrated that greater weight gain could be induced during winter in Inner Mongolia by improved nutritional status through promotion of microbial populations using urea and sugar.展开更多
Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change.Combined observations and analyse...Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change.Combined observations and analyses of plant ecophysiology and optical remote sensing would enable us to achieve these studies.In order to examine the utility of spectral vegetation indices(VIs)for assessing ecosystem-level photosynthesis,we investigated the relationships between canopy-scale photosynthetic productivity and canopy spectral reflectance over seasons for 5 years in a cool,temperate deciduous broadleaf forest at‘Takayama’super site in central Japan.Methods Daily photosynthetic capacity was assessed by in situ canopy leaf area index(LAI),(LAI×Vcmax[single-leaf photosynthetic capacity]),and the daily maximum rate of gross primary production(GPPmax)was estimated by an ecosystem carbon cycle model.We examined five VIs:normalized difference vegetation index(NDVI),enhanced vegetation index(EVI),green–red vegetation index(GRVI),chlorophyll index(CI)and canopy chlorophyll index(CCI),which were obtained by the in situ measurements of canopy spectral reflectance.Important Findings Our in situ observation of leaf and canopy characteristics,which were analyzed by an ecosystem carbon cycling model,revealed that their phenological changes are responsible for seasonal and interannual variations in canopy photosynthesis.Significant correlations were found between the five VIs and canopy photosynthetic capacity over the seasons and years;four of the VIs showed hysteresis-type relationships and only CCI showed rather linear relationship.Among the VIs examined,we applied EVI–GPPmax relationship to EVI data obtained by Moderate Resolution Imaging Spectroradiometer to estimate the temporal and spatial variation in GPPmax over central Japan.Our findings would improve the accuracy of satellite-based estimate of forest photosynthetic productivity in fine spatial and temporal resolutions,which are necessary for detecting any response of terrestrial ecosystem to meteorological fluctuations.展开更多
基金Supported by the National Nature Science Foundation of China(31460615)the Modern Agroindustry Technology Research System(CARS-39)
文摘The present experiment was conducted to determine the effects of Molasses-Urea Supplementation (MUS) on weight gain, ruminal fermentation and major microbial populations in sheep on a winter grazing regime in Inner Mongolia. Total 40 sheep, allowed free consumption of MUS after grazing, served as a treatment group, while 30 sheep, fed only by pasture grazing, served as a control group. Ruminal fermentation parameters, consisted of pH, Bacterial Crude Protein (BCP) and ammonia nitrogen (NH3-N) were measured. In addition, numbers of five symbiotic bacteria were investigated. The results showed as follows: the average daily weight gain, concentration of NH3-N and numbers of protozoa were significantly higher (p〈0.05) in the treatment group than those in the control group. Contrastingly, no significant difference was found in BCP concentration and pH between the two groups. At the end of the experiment, the populations of Selenomonas ruminantium, Anaerovibrio lipolytica, Fibrobacter succinogenes, Ruminococcus flaveciens and Ruminococcus albus in the treatment group were significantly higher than those of the control group (p〈0.05). These results demonstrated that greater weight gain could be induced during winter in Inner Mongolia by improved nutritional status through promotion of microbial populations using urea and sugar.
基金This long-term study was partly supported by the JSPS 21st Century COE Program at Gifu Universitythe JSPS-NRF-NSFS A3 Foresight Program,a Global Change Observation Mission(GCOM-C,PI#102)of the Japan Aerospace Exploration Agency(JAXA)+2 种基金the Global Environment Research Fund(S-1)and the Environment Research&Technology Development Fund(D-0909 and S-9)of the Ministry of Environment Japan,the JSPS KAKENHI(22310008)the JSPS‘Funding Program for Next Generation World-Leading Researchers(NEXT Program)’S.N.is supported by JSPS-KAKENHI(24710021,Grant-in-Aid for Young Scientists B).
文摘Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change.Combined observations and analyses of plant ecophysiology and optical remote sensing would enable us to achieve these studies.In order to examine the utility of spectral vegetation indices(VIs)for assessing ecosystem-level photosynthesis,we investigated the relationships between canopy-scale photosynthetic productivity and canopy spectral reflectance over seasons for 5 years in a cool,temperate deciduous broadleaf forest at‘Takayama’super site in central Japan.Methods Daily photosynthetic capacity was assessed by in situ canopy leaf area index(LAI),(LAI×Vcmax[single-leaf photosynthetic capacity]),and the daily maximum rate of gross primary production(GPPmax)was estimated by an ecosystem carbon cycle model.We examined five VIs:normalized difference vegetation index(NDVI),enhanced vegetation index(EVI),green–red vegetation index(GRVI),chlorophyll index(CI)and canopy chlorophyll index(CCI),which were obtained by the in situ measurements of canopy spectral reflectance.Important Findings Our in situ observation of leaf and canopy characteristics,which were analyzed by an ecosystem carbon cycling model,revealed that their phenological changes are responsible for seasonal and interannual variations in canopy photosynthesis.Significant correlations were found between the five VIs and canopy photosynthetic capacity over the seasons and years;four of the VIs showed hysteresis-type relationships and only CCI showed rather linear relationship.Among the VIs examined,we applied EVI–GPPmax relationship to EVI data obtained by Moderate Resolution Imaging Spectroradiometer to estimate the temporal and spatial variation in GPPmax over central Japan.Our findings would improve the accuracy of satellite-based estimate of forest photosynthetic productivity in fine spatial and temporal resolutions,which are necessary for detecting any response of terrestrial ecosystem to meteorological fluctuations.