The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used ...The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used to prepare the white carbon black carrier. Ag+ was selected to be the antibacterial ion, and cerous nitrate was selected to be the additive. They were synthesized on the white carbon black carrier. The structures and properties of antibacterial material were characterized by inductively coupled plasma, particle size measurement instrument, fourier transform infrared and enumeration tests (Escherichia coli as experimental bacterium). Results showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the general Ag-antibacterial white carbon black (without containing rare earth). Ag+ was bound to white carbon black by ion exchange process and adsorption process. Bacteriostasis rate is over 99%, and the particle size can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are good thermal and light stability. Furthermore, from the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.展开更多
Effects of various technological conditions such as ρ (Cl -), ρ (Fe) T, pH value and temperature on the cell voltage, lead leaching rate and the cathodic current efficiency of the slurry electrolysis of high silver ...Effects of various technological conditions such as ρ (Cl -), ρ (Fe) T, pH value and temperature on the cell voltage, lead leaching rate and the cathodic current efficiency of the slurry electrolysis of high silver galena concentrate were studied, and the behavior regularity of lead and silver was investigated. As a result, the suitable condition was determined as: ρ (Cl -) 230?g/L, ρ (Fe) T 15?g/L, pH 1, temperature 70?℃, electrolysis time 6?h. Under such condition, adopting the cathodic current density of 150?A/m 2 and the liquid solid ratio of 15∶1, lead powder with a purity degree of 91.18% was got. At the same time, leaching rate of lead, leaching rate of silver and cathodic current efficiency amounted to 96.88%, 70.88% and 75.68% respectively.展开更多
The pure aluminum and Al Mg Mn alloy were anodized in 4%, 10% and 18.5% phosphoric acid solution, respectively. As for pure Al, the maximum thickness of anodized aluminum oxide (AAO) membrane, 216 nm, is obtained by b...The pure aluminum and Al Mg Mn alloy were anodized in 4%, 10% and 18.5% phosphoric acid solution, respectively. As for pure Al, the maximum thickness of anodized aluminum oxide (AAO) membrane, 216 nm, is obtained by being anodized in 4% solution. Its average pore diameter is around 70 nm, and pore density exceeds 10 10 /cm 2. Under the same technology condition, the membrane thickness decreases with increment of electrolyte content. TEM images show that element Mg or Mn added into aluminum alloy can damage the integration of AAO membrane. During anodizing of aluminum, the formed oxide layer is amorphous. After being annealed at 600 ℃ for 24 h, it is still amorphous. However, when membrane is annealed at 930 ℃, the amorphous oxide begins to transform to γ Al 2O 3 .展开更多
基金National Nature Science Foundation of China (50574045)Specialized Research Fund for the Doctoral Program of Higher Education (20050674003)the Science Research Fund of Yunnan Provincial Department of Education (07Y41398)
文摘The antimicrobial effect of the Ag-White Carbon Black containing rare earth was investigated. Inorganic antibiotic materials consist of the antibacterial ion, the additive and the carrier. The sol-gel method was used to prepare the white carbon black carrier. Ag+ was selected to be the antibacterial ion, and cerous nitrate was selected to be the additive. They were synthesized on the white carbon black carrier. The structures and properties of antibacterial material were characterized by inductively coupled plasma, particle size measurement instrument, fourier transform infrared and enumeration tests (Escherichia coli as experimental bacterium). Results showed that the amount of antibacterial ions and bacteriostasis rate of this new material are higher than those for the general Ag-antibacterial white carbon black (without containing rare earth). Ag+ was bound to white carbon black by ion exchange process and adsorption process. Bacteriostasis rate is over 99%, and the particle size can be extended down to 7 μm with a narrow size distribution. Other advantages of this material are good thermal and light stability. Furthermore, from the antibacterial experiment in rubber and the coating surface of metal, this new material showed promising results. The possible antibacterial mechanism was also proposed through all the experimental data in this study.
文摘Effects of various technological conditions such as ρ (Cl -), ρ (Fe) T, pH value and temperature on the cell voltage, lead leaching rate and the cathodic current efficiency of the slurry electrolysis of high silver galena concentrate were studied, and the behavior regularity of lead and silver was investigated. As a result, the suitable condition was determined as: ρ (Cl -) 230?g/L, ρ (Fe) T 15?g/L, pH 1, temperature 70?℃, electrolysis time 6?h. Under such condition, adopting the cathodic current density of 150?A/m 2 and the liquid solid ratio of 15∶1, lead powder with a purity degree of 91.18% was got. At the same time, leaching rate of lead, leaching rate of silver and cathodic current efficiency amounted to 96.88%, 70.88% and 75.68% respectively.
文摘The pure aluminum and Al Mg Mn alloy were anodized in 4%, 10% and 18.5% phosphoric acid solution, respectively. As for pure Al, the maximum thickness of anodized aluminum oxide (AAO) membrane, 216 nm, is obtained by being anodized in 4% solution. Its average pore diameter is around 70 nm, and pore density exceeds 10 10 /cm 2. Under the same technology condition, the membrane thickness decreases with increment of electrolyte content. TEM images show that element Mg or Mn added into aluminum alloy can damage the integration of AAO membrane. During anodizing of aluminum, the formed oxide layer is amorphous. After being annealed at 600 ℃ for 24 h, it is still amorphous. However, when membrane is annealed at 930 ℃, the amorphous oxide begins to transform to γ Al 2O 3 .