期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Vitality variation and population structure of a riparian forest in the lower reaches of the Tarim River,NW China 被引量:8
1
作者 Maierdang Keyimu Umut Halik +1 位作者 Florian Betz Choimaa Dulamsuren 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期742-753,共12页
Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower re... Since 2000, the Chinese government has implemented emergency water diversion measures to restore the damaged riparian forest ecosystem with dominant tree species Euphrat poplar(Populus euphratica Oliv.)at the lower reaches of the Tarim River. In the present study, comparative analysis of variations in the vitality of P. euphratica trees were made using 2005 and 2010 data to illustrate the revitalization process of riparian forest. Poplar trees within 300 m of the riverbed were positively revitalized, while the vitality of trees farther than 300 m from the river decreased. Population structure was studied to demonstrate the development of poplar community. In the first belt, the class structure for the diameter at breast height(DBH) of P. euphratica fit a logistic model, and the 2nd, 3rd and 4th belt curve fittings were close to a Gaussian model; in other plots they were bimodal. Cluster analysis of the composition of the DBH class of poplar trees demonstrated that those within 16–36 cm DBH were the most abundant(58.49% of total) in study area, under 16 cm of DBH were second(31.36%), and trees >40 cm DBH were the least abundant(10.15%). More than 80% of the trees were young and medium-sized, which means that the poplar forest community in the vicinity of the lower Tarim River is at a stable developmental stage. The abundance of juvenile trees of P. euphratica in the first and second measuring belts was 12.13% in 2005 and increased to 25.52% in 2010, which means that the emergency water transfer had a positive impact on the generation of young P. euphratica trees in the vicinity of the river. 展开更多
关键词 Lower Tarim River Riparian forest ecosystem Populus euphratica VITALITY Population structure Diameter at breast height
下载PDF
Modeling height–diameter relationship for Populus euphratica in the Tarim riparian forest ecosystem, Northwest China 被引量:9
2
作者 Tayierjiang Aishan Umüt Halik +2 位作者 Florian Betz Philipp Gartner Bernd Cyffka 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第4期889-900,共12页
Modeling height–diameter relationships is an important component in estimating and predicting forest development under different forest management scenarios. In this paper, ten widely used candidate height–diameter ... Modeling height–diameter relationships is an important component in estimating and predicting forest development under different forest management scenarios. In this paper, ten widely used candidate height–diameter models were fitted to tree height and diameter at breast height(DBH)data for Populus euphratica Oliv. within a 100 ha permanent plots at Arghan Village in the lower reaches of the Tarim River, Xinjiang Uyghur Autonomous Region of China. Data from 4781 trees were used and split randomly into two sets:75 % of the data were used to estimate model parameters(model calibration), and the remaining data(25 %) were reserved for model validation. All model performances were evaluated and compared by means of multiple model performance criteria such as asymptotic t-statistics of model parameters, standardized residuals against predicted height,root mean square error(RMSE), Akaike’s informationcriterion(AIC), mean prediction error(ME) and mean absolute error(MAE). The estimated parameter a for model(6) was not statistically significant at a level of a = 0.05. RMSE and AIC test result for all models showed that exponential models(1),(2),(3) and(4) performed significantly better than others. All ten models had very small MEs and MAEs. Nearly all models underestimated tree heights except for model(6). Comparing the MEs and MAEs of models, model(1) produced smaller MEs(0.0059) and MAEs(1.3754) than other models. To assess the predictive performance of models, we also calculated MEs by dividing the model validation data set into 10-cm DBH classes. This suggested that all models were likely to create higher mean prediction errors for tree DBH classes[20 cm. However, no clear trend was found among models.Model(6) generated significantly smaller mean prediction errors across all tree DBH classes. Considering all the aforementioned criteria, model(1): TH ? 1:3 t a= e1 t b?eàc?DBHT and model(6): TH ? 1:3 t DBH2= ea t b?DBH t c ? DBH2T are recommended as suitable models for describing the height–diameter relationship of P. euphratica. The limitations of other models showing poor performance in predicting tree height are discussed. We provide explanations for these shortcomings. 展开更多
关键词 calibration shortcomings absolute dividing exponential fitting candidate permanent fitted estimating
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部