期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Comparison of GPR Random Noise Attenuation Using Autoregressive-FX Method and Tunable Quality Factor Wavelet Transform TQWT with Soft and Hard Thresholding 被引量:1
1
作者 Amin Ebrahimib Bardar Behrooz Oskooi Alireza Goudarzi 《Journal of Signal and Information Processing》 2019年第1期19-35,共17页
Ground Penetration Radar is a controlled source geophysical method which uses high frequency electromagnetic waves to study shallow layers. Resolution of this method depends on difference of electrical properties betw... Ground Penetration Radar is a controlled source geophysical method which uses high frequency electromagnetic waves to study shallow layers. Resolution of this method depends on difference of electrical properties between target and surrounding electrical medium, target geometry and used bandwidth. The wavelet transform is used extensively in signal analysis and noise attenuation. In addition, wavelet domain allows local precise descriptions of signal behavior. The Fourier coefficient represents a component for all time and therefore local events must be described by the phase characteristic which can be abolished or strengthened over a large period of time. Finally basis of Auto Regression (AR) is the fitting of an appropriate model on data, which in practice results in more information from data process. Estimation of the parameters of the regression model (AR) is very important. In order to obtain a higher-resolution spectral estimation than other models, recursive operator is a suitable tool. Generally, it is much easier to work with an Auto Regression model. Results shows that the TQWT in soft thresholding mode can attenuate random noise far better than TQWT in hard thresholding mode and Autoregressive-FX method. 展开更多
关键词 GPR Autoregressive-FX Tunable Quality Factor WAVELET TRANSFORM TQWT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部