Cracked straight-through Brazilian disc(CSTBD) samples prepared using two rock materials were used for thermal treatment from room temperature to 700℃. Uniaxial splitting experiments were performed using an automatic...Cracked straight-through Brazilian disc(CSTBD) samples prepared using two rock materials were used for thermal treatment from room temperature to 700℃. Uniaxial splitting experiments were performed using an automatic electro-hydraulic servo press to study the evolution laws of physical and fracture properties of different deep rock materials under high-temperature geological conditions. The fracture characteristics were measured using an industrial camera and digital image correlation technology to analyze the effect of high temperature on fracture properties and failure modes of the CSTBD samples after different thermal treatments. The micro-damage properties of green sandstone and granite materials were obtained using a scanning electron microscope(SEM). The following conclusions were drawn from the test results:(1) With the increasing temperature, the fracture characteristics of green sandstone and granite change from brittle fracture to plasticity fracture, the longitudinal wave velocity of granite decreases sharply at 600℃, and the damage factor reaches 0.8748 at 700℃.(2) The fracture toughness of green sandstone and granite decreases with increasing temperature;however, the decreasing range of granite is larger than that of green sandstone.(3) As the temperature increases, the fracture morphologies of green sandstone and granite materials become rougher, whereas thermal damage cracks of granite and intergranular fractures inside sandstone as well as pores of sandstone increase.(4) The crack tip opening displacement and peak strain corresponding to peak load increase with the temperature.展开更多
Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation ...Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA.展开更多
The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggreg...The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature.展开更多
The hetero-zone boundary affected region(HBAR)significantly influences the mechanical behaviors of layered materials,where the deformation mechanisms differ from those in the bulk layers.In this study,three kinds of h...The hetero-zone boundary affected region(HBAR)significantly influences the mechanical behaviors of layered materials,where the deformation mechanisms differ from those in the bulk layers.In this study,three kinds of heterogeneous Cu-Fe layered materials with different interface spacing but identical total thicknesses were prepared.The effects of HBAR and strain partitioning on the tensile behavior of the lay-ered materials were investigated.The results showed that layered materials had enhanced yield strength and uniform elongation with decreasing interface spacing.During tensile deformation,geometrically nec-essary dislocations(GNDs)were generated at hetero-zone boundaries and piled up near them,resulting in hetero-deformation induced(HDI)strengthening and HDI work hardening.Surface profilometry mea-surements showed that the Cu and Fe layers exhibited obvious strain partitioning and mutual constraint.With decreasing interface spacing,strain partitioning is enhanced by interlayer constraint,which pre-vented strain localization at interfaces and thus improved the synergetic deformation of layers.A higher fraction of HBAR can improve the mechanical performance of heterogeneous layered materials.This study deepens our understanding of the relationship between HBAR and strength-ductility synergy and provides some insight into the design of layered materials.展开更多
Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loa...Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loading axis were verified to be the most potential sites to fabricate the microcracks caused by the high strain gradient. The initial crack extension inside ferrite grain was driven by shear stress in model II along the direction with a 45° angle to the loading axis. Banded pearlite colony and the high-angle grain boundaries were considered as the dominant factors that promote the fatigue resistance of the material through arousing crack deflection in short crack propagation range and crack branching in long crack propagation range to reduce the crack propagation driving force in the crack tip. P-S-N curves were used to quantify the dispersion of fatigue lifetimes and evaluate the effect of elevated volume content of pearlite colony on the fatigue performance of the material.展开更多
基金funding support from the Sichuan Science and Technology Program (Grant No. 2021YJ0511)the State Key Laboratory for Geo-Mechanics and Deep Underground Engineering,China University of Mining&Technology (Grant No.SKLGDUEK2111)the Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province (Grant No. ZJRMG-2020-01)。
文摘Cracked straight-through Brazilian disc(CSTBD) samples prepared using two rock materials were used for thermal treatment from room temperature to 700℃. Uniaxial splitting experiments were performed using an automatic electro-hydraulic servo press to study the evolution laws of physical and fracture properties of different deep rock materials under high-temperature geological conditions. The fracture characteristics were measured using an industrial camera and digital image correlation technology to analyze the effect of high temperature on fracture properties and failure modes of the CSTBD samples after different thermal treatments. The micro-damage properties of green sandstone and granite materials were obtained using a scanning electron microscope(SEM). The following conclusions were drawn from the test results:(1) With the increasing temperature, the fracture characteristics of green sandstone and granite change from brittle fracture to plasticity fracture, the longitudinal wave velocity of granite decreases sharply at 600℃, and the damage factor reaches 0.8748 at 700℃.(2) The fracture toughness of green sandstone and granite decreases with increasing temperature;however, the decreasing range of granite is larger than that of green sandstone.(3) As the temperature increases, the fracture morphologies of green sandstone and granite materials become rougher, whereas thermal damage cracks of granite and intergranular fractures inside sandstone as well as pores of sandstone increase.(4) The crack tip opening displacement and peak strain corresponding to peak load increase with the temperature.
基金supported by the National Natural Science Foundation of China (Nos. 12102280, 12172238, 11832007, 12022208, 12072212, and 52003181)the Science & Technology Support Program of Sichuan Province (Nos. 2020YJ0230, and 2021YJ0555)the Fundamental Research Funds for the Central Universities of China (No.2021SCU12129)
文摘Ultrasonic fatigue tests are performed on a magnesium alloy with and without ultrasonic peening treatment(UPT).Surface enhancement layer leads to the complete change of crack initiation sites.However,crack initiation mechanism keeps the same and results in a single-faceted morphology at crack initiation site.Microcracks initiate as Mode Ⅱ crack within the original grain,but deflect to Mode I crack outside of the original cracked grain.A threshold SIF value is proposed to evaluate the retarding effect of grain boundary on microcrack propagation.Outside of the original cracked grain,Mode I crack propagation below the threshold ΔK_(σ-th) is responsible for the formation of fine granular area(FGA,a nano-grain layer).Based on the Numerous Cyclic Pressing(NCP) model,it is proposed that crack type should be another necessary condition for the formation of FGA.
基金the National Natural Science Foundation of China(No.51408382)the Science and Technology Supported Program of Sichuan Province(Nos.2015GZ0245&2015JPT0001)the Refunded Program for Changjiang Scholars and Innovative Research Team in University of China(IRT14R37)
文摘The mechanical and thermal properties of steel reinforced concrete columns with CFRP reinforcement were examined after exposure to a high temperature of 500℃. The concrete made with normal and recycled coarse aggregate(RCA) was fabricated and three different RCA replacement ratios(0, 50%, and 100%) were investigated. The fatigue properties of steel reinforced concrete with RCA and CFRP reinforcement were tested for two million cycles at a frequency of 2.5 Hz. The test results show that the failure of strengthened specimens is mainly caused by rupture of CFRP jacket and buckling of inner section steel reinforcement. However, for the unstrengthened specimen, both of inner steel buckling and core concrete cracking are the main contributors to the damage. The load-bearing capacity, deformation and energy dissipation of the specimens during the fatigue test could be strengthened greatly by CFRP reinforcement. However, the CFRP reinforcement has little influence on the improvement of the stiffness of the specimens, which may be caused by a plastic damage accumulation during the early cycles of fatigue tests. Finally, a static test was conducted on the postfatigue specimens, the results showed that a large decrease in stiffness was observed for the specimens subjected to high temperature and fatigue, and the fatigue loading had a higher influence on the specimens than the high temperature.
基金supported by the National Natural Science Foundation of China(Nos.51931003,92263201)the Fundamental Research Funds for the Central Universities(No.2022SCU12094)+2 种基金the Project funded by China Postdoctoral Science Foundation(No.2022M722253)supported by the Elements Strategy Initiative for Structural Materials(ESISM,No.JPMXP0112101000)the Grant-in-Aid for Scientific Research(A)(No.JP23H00234)through the Ministry of Education,Culture,Sports,Science and Technology(MEXT),Japan.
文摘The hetero-zone boundary affected region(HBAR)significantly influences the mechanical behaviors of layered materials,where the deformation mechanisms differ from those in the bulk layers.In this study,three kinds of heterogeneous Cu-Fe layered materials with different interface spacing but identical total thicknesses were prepared.The effects of HBAR and strain partitioning on the tensile behavior of the lay-ered materials were investigated.The results showed that layered materials had enhanced yield strength and uniform elongation with decreasing interface spacing.During tensile deformation,geometrically nec-essary dislocations(GNDs)were generated at hetero-zone boundaries and piled up near them,resulting in hetero-deformation induced(HDI)strengthening and HDI work hardening.Surface profilometry mea-surements showed that the Cu and Fe layers exhibited obvious strain partitioning and mutual constraint.With decreasing interface spacing,strain partitioning is enhanced by interlayer constraint,which pre-vented strain localization at interfaces and thus improved the synergetic deformation of layers.A higher fraction of HBAR can improve the mechanical performance of heterogeneous layered materials.This study deepens our understanding of the relationship between HBAR and strength-ductility synergy and provides some insight into the design of layered materials.
基金The authors would gratefully acknowledge the financial support by the National Natural Science Foundation of China(Nos.11832007,11772209 and 11802042)Han-qing Liu thanks for the financial support from the China Scholarship Council(CSC,No.201806240228).
文摘Effects of high-frequency cyclic loading on the banded ferrite-pearlite steel were analyzed through crack initiation and propagation. Interfaces of ferrite and pearlite colony with a small angle deviation from the loading axis were verified to be the most potential sites to fabricate the microcracks caused by the high strain gradient. The initial crack extension inside ferrite grain was driven by shear stress in model II along the direction with a 45° angle to the loading axis. Banded pearlite colony and the high-angle grain boundaries were considered as the dominant factors that promote the fatigue resistance of the material through arousing crack deflection in short crack propagation range and crack branching in long crack propagation range to reduce the crack propagation driving force in the crack tip. P-S-N curves were used to quantify the dispersion of fatigue lifetimes and evaluate the effect of elevated volume content of pearlite colony on the fatigue performance of the material.