The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph...The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.展开更多
The Shibantan Member(Dengying Formation, South China) represents one of only two carbonate settings with Ediacara-type organisms and offers a rare opportunity to study the biogeochemistry of these ecosystems. To eva...The Shibantan Member(Dengying Formation, South China) represents one of only two carbonate settings with Ediacara-type organisms and offers a rare opportunity to study the biogeochemistry of these ecosystems. To evaluate possibilities and limitations for future biomarker studies on fossil-bearing outcrop samples of the Shibantan Member, we analysed the spatial distribution of hydrocarbons in extractable organic matter(i.e. bitumen) on a millimetre scale. Our study demonstrates that the sample and most likely also other rocks from the same setting are contaminated with petroleum-derived compounds that bear the potential for erroneous interpretations in palaeo-reconstructions. The contamination was revealed by distribution patterns and amounts of extractable n-alkanes and acyclic isoprenoids. The contamination is linked to the external weathering surfaces but also to cracks within the rock, and the extent most likely depends on concentration gradients between these contamination sources. Here we show that contamination can successfully be distinguished from syngenetic signals obtained from non-extractable organic matter(i.e. kerogen) using catalytic hydropyrolysis(Hy Py). However, we observed that decalcification is necessary to achieve sufficient yields of kerogen-bound hydrocarbons and to avoid artificial alteration of the biomarker signals due to matrix effects.展开更多
The Oligocene Continental Terminal Formation of the Kandi Basin contains high grades of iron mineralization (~56.72% Total Fe). The microscopic study under the polarized and reflected light showed that the iron ore co...The Oligocene Continental Terminal Formation of the Kandi Basin contains high grades of iron mineralization (~56.72% Total Fe). The microscopic study under the polarized and reflected light showed that the iron ore consists of silicate minerals (quartz 50% and zircon 1%) and non-silicate minerals (goethite 30%, hematite 7%, magnetite 3%, pyrite 1%, chalcopyrite 1%, blende 3%, galena 3%, scheelite 1% and gold 2%). The X-rays fluorescence shows that the iron ore is characterized by various elements, such as Fe2O3 (57.91% to 91.33%), SiO2 (3.07% to 33.19%), aluminum (2.94% to 7.74%), vanadium (0.04% to 0.11%), phosphorus (0.79% to 2.29%) and sulfur (<0.3%). The deleterious elements grade is above the permissible limit in metallurgy (0.05% - 0.07% for phosphorus and 0.1% for sulfur). Their high grades indicate that the Kandi Basin iron ore characteristics are not favorable for steel manufacturing despite its good vanadium contents (0.04% to 0.11%). However, it could be used for the cast iron manufacture. Spectrometric analysis by atomic absorption confirms the presence of low-grade gold associated to the iron ore (from 0.006 to 0.015 ppm). The comparative study of discontinuous stratiform iron ore of the Kandi Basin with other oolitic iron ores in exploitation from other countries such as Brazil, Australia, China, Russia, Uganda and the United States shows that iron ore of the Kandi Basin can be mined despite its high silica content.展开更多
The mechanical behavior of sandy facies of Opalinus Clay at the Mont Terri underground rock laboratory(URL)in Switzerland was investigated with drained and undrained triaxial compression and extension,cyclic compressi...The mechanical behavior of sandy facies of Opalinus Clay at the Mont Terri underground rock laboratory(URL)in Switzerland was investigated with drained and undrained triaxial compression and extension,cyclic compression,and creep tests.Samples were taken from boreholes drilled parallel to bedding.Most of the samples were reconditioned to minimize sampling effects of desaturation and micro-cracking.The compression was accomplished by increasing axial stress at constant radial stress.The extension was carried out by increasing radial stress at constant axial stress.Moreover,extension was also achieved by simultaneously increasing radial stress and decreasing axial stress under constant mean stress.The test results showed elastoplastic stress-strain behavior with volumetric compaction until onset of dilatancy at high deviatoric stresses above 80%-90%of the peak failure strength.The strength is dependent upon load path and mean stress.The strength under triaxial compression is higher than that under extension.The respective strength increases with increasing mean stress.Desaturation enhances the stiffness and strength of the claystone.The deformation and strength of the elaystone are time-dependent.Under constant deviatoric stress,the claystone crept continuously with time,which can be characterized by a transient phase and a following stationary phase,and even a tertiary phase at high deviatoric stresses to rupture.展开更多
Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow...Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability.展开更多
The importance of groundwater portability and the possible sources of anthropogenic contamination have led to the development of intrinsic groundwater vulnerability mapping. In this study, groundwater vulnerability ma...The importance of groundwater portability and the possible sources of anthropogenic contamination have led to the development of intrinsic groundwater vulnerability mapping. In this study, groundwater vulnerability map for Amman Zarqa Basin (AZB) has been generated based on information derived and calculated from processed remote sensing information and laboratory analysis. The database was prepared from soil hydro geological and hydrological data, Digital Elevation Model (DEM), and geological maps. For assessment of groundwater vulnerability, the method proposed by the state geological surveys of Germany (GLA-method) has been adapted and applied. The vulnerability map shows about 77% which is about 2919 Km2 of the AZB is classified as very low to low which could be corresponding to the pollution sources due to the absence of potential hazards and also due to low vulnerabilities. These areas could consequently be interesting for future development as they set preferable in view of ground water protection. In addition, about 14% (530 km2) is classified within the moderate vulnerability zone. About 5% (around 19 km2) of the study area lies under the area of high vulnerability zone. Only 4% can be classified as very high risk areas. Groundwater quality results revealed that water leach ate from point source is the main cause for groundwater contaminations in highly vulnerable karstic limestone aquifer (Amman Wadi Es Sir Aquifer-B2/A7). On the other hand, the Kurnub Sandstone aquifer (K) is generally well protected in the central and eastern part of the AZB due to its thick cover of partly marly sequences. However, the Kurnub aquifer might have a potential risk from the recharged infiltrating surface water from the Zarqa River, which is highly polluted due to industrial activities located along the river.展开更多
The Muruntau gold deposit in the Central Kyzylkum,Uzbekistan is one of the largest single gold deposits worldwide.Data available from the literature are reviewed with the aim to(1) integrate the present knowledge on...The Muruntau gold deposit in the Central Kyzylkum,Uzbekistan is one of the largest single gold deposits worldwide.Data available from the literature are reviewed with the aim to(1) integrate the present knowledge on this unique deposit from Russian and English literature;(2) show the considerable progress made in the understanding of the genesis of the Muruntau deposit during the last decades;and(3) point to problems still open for future research.Deposit formation occurred through a multi-stage process involving sedimentation,regional metamorphism including thrusting,magmatism with formation of hornfels aureoles and several stages of hydrothermal activity.According to recent knowledge,synsedimentary or pure metamorphic formation of gold mineralization seems unlikely.The role of granite magmatism occurring roughly within the same time interval as the main hydrothermal gold precipitation remains uncertain.There are no signs of interaction of matter between the magma(s) and the hydrothermal system(s).On the other hand,there was an intense,high-temperature(above 400 ℃)fluid- wall rock interaction resulting in the formation of gold-bearing,cone-like stockworks with veins,veinlets and gold-bearing metasomatites.Several chemical and isotope indicators hint at an involvement of lower-crustal or mantle-related sources as well as of surface waters in ore formation.Deposit formation through brecciation involving explosion,hydrothermal or tectonic breccias might explain these data.Further investigations on breccia formation as well as on the exact timing of relevant sedimentary,metamorphic,magmatic and hydrothermal events are recommended.展开更多
For deep geological disposal of high-level radioactive waste(HLW)in granite,the temperature on the HLW canisters is commonly designed to be lower than100fiC.This criterion dictates the dimension of the repository.Base...For deep geological disposal of high-level radioactive waste(HLW)in granite,the temperature on the HLW canisters is commonly designed to be lower than100fiC.This criterion dictates the dimension of the repository.Based on the concept of HLW disposal in vertical boreholes,thermal process in the nearfield(host rock and buffer)surrounding HLW canisters has been simulated by using different methods.The results are drawn as follows:(a)the initial heat power of HLW canisters is the most important and sensitive parameter for evolution of temperaturefield;(b)the thermal properties and variations of the host rock,the engineered buffer,and possible gaps between canister and buffer and host rock are the additional key factors governing the heat transformation;(c)the gaps width and thefilling by water or air determine the temperature offsets between them.展开更多
Sustainable development of urban areas demands,among others,a holistic approach for identification and monitoring of environmental changes caused by human activities.In this study,the human-made impact on the geo-envi...Sustainable development of urban areas demands,among others,a holistic approach for identification and monitoring of environmental changes caused by human activities.In this study,the human-made impact on the geo-environment is studied through the application of the change detection study based on Principal Component Analysis on Landsat imageries and comparison of the digital elevation models taken at different times.The analysis is set up to identify and quantify the anthropogenic geomorphological changes in the loess landscape in Lanzhou city,Northwest China.Since 2002 Lanzhou has been undergoing a rapid economic development associated with construction boom.Due to limited flat building ground in the narrowed Yellow River Valley and subsequent expansion into the surrounding loess mountains,massive earthworks are conducted for reclamation of the suitable building ground.The results of the change detection analysis show that approximately 10%of the semi-natural study area corresponding to 35 km2 has been reshaped by leveling and terracing since 1994.In particular,the geomorphology was significantly changed in these and adjacent areas.For the single developing area Taipingyang,a moving volume of up to 57 million m3 was roughly estimated.展开更多
The Arctic,an essential ecosystem on Earth,is subject to pronounced anthropogenic pressures,most notable being the climate change and risks of crude oil pollution.As crucial elements of Arctic environments,benthic mic...The Arctic,an essential ecosystem on Earth,is subject to pronounced anthropogenic pressures,most notable being the climate change and risks of crude oil pollution.As crucial elements of Arctic environments,benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination.Yet,the Arctic benthic microbiomes are among the least explored biomes on the planet.Here we combined geochemical analyses,incubation experiments,and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea.The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere,such as Chloroflexi,Atribacteria,and Bathyarcheaota.The topmost benthic communities were spatially structured by sedimentary organic carbon,lacking a clear distinction among geographic regions.With increasing sediment depth,the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments.The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways.Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere.These include Alkalimarinus and Halioglobus,previously unrecognized as hydrocarbon-degrading genera,both harboring the full genetic potential for aerobic alkane oxidation.These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.展开更多
基金support from the OpenGeoSys communitypartially funded by the Prime Minister Research Fellowship,Ministry of Education,Government of India with the project number SB21221901CEPMRF008347.
文摘The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios.
基金supported by the Deutsche Forschungsgemeinschaft (grant BL971/1-3)the National Basic Research Program of China (2013CB835006)+2 种基金the National Natural Science Foundation of Chinathe Courant Research Centre of the University Gttingenthe German Academic Exchange Service
文摘The Shibantan Member(Dengying Formation, South China) represents one of only two carbonate settings with Ediacara-type organisms and offers a rare opportunity to study the biogeochemistry of these ecosystems. To evaluate possibilities and limitations for future biomarker studies on fossil-bearing outcrop samples of the Shibantan Member, we analysed the spatial distribution of hydrocarbons in extractable organic matter(i.e. bitumen) on a millimetre scale. Our study demonstrates that the sample and most likely also other rocks from the same setting are contaminated with petroleum-derived compounds that bear the potential for erroneous interpretations in palaeo-reconstructions. The contamination was revealed by distribution patterns and amounts of extractable n-alkanes and acyclic isoprenoids. The contamination is linked to the external weathering surfaces but also to cracks within the rock, and the extent most likely depends on concentration gradients between these contamination sources. Here we show that contamination can successfully be distinguished from syngenetic signals obtained from non-extractable organic matter(i.e. kerogen) using catalytic hydropyrolysis(Hy Py). However, we observed that decalcification is necessary to achieve sufficient yields of kerogen-bound hydrocarbons and to avoid artificial alteration of the biomarker signals due to matrix effects.
文摘The Oligocene Continental Terminal Formation of the Kandi Basin contains high grades of iron mineralization (~56.72% Total Fe). The microscopic study under the polarized and reflected light showed that the iron ore consists of silicate minerals (quartz 50% and zircon 1%) and non-silicate minerals (goethite 30%, hematite 7%, magnetite 3%, pyrite 1%, chalcopyrite 1%, blende 3%, galena 3%, scheelite 1% and gold 2%). The X-rays fluorescence shows that the iron ore is characterized by various elements, such as Fe2O3 (57.91% to 91.33%), SiO2 (3.07% to 33.19%), aluminum (2.94% to 7.74%), vanadium (0.04% to 0.11%), phosphorus (0.79% to 2.29%) and sulfur (<0.3%). The deleterious elements grade is above the permissible limit in metallurgy (0.05% - 0.07% for phosphorus and 0.1% for sulfur). Their high grades indicate that the Kandi Basin iron ore characteristics are not favorable for steel manufacturing despite its good vanadium contents (0.04% to 0.11%). However, it could be used for the cast iron manufacture. Spectrometric analysis by atomic absorption confirms the presence of low-grade gold associated to the iron ore (from 0.006 to 0.015 ppm). The comparative study of discontinuous stratiform iron ore of the Kandi Basin with other oolitic iron ores in exploitation from other countries such as Brazil, Australia, China, Russia, Uganda and the United States shows that iron ore of the Kandi Basin can be mined despite its high silica content.
基金This work was funded by the German Federal Ministry for Economic Affairs and Energy (BMWi) under contract number 02E11304.
文摘The mechanical behavior of sandy facies of Opalinus Clay at the Mont Terri underground rock laboratory(URL)in Switzerland was investigated with drained and undrained triaxial compression and extension,cyclic compression,and creep tests.Samples were taken from boreholes drilled parallel to bedding.Most of the samples were reconditioned to minimize sampling effects of desaturation and micro-cracking.The compression was accomplished by increasing axial stress at constant radial stress.The extension was carried out by increasing radial stress at constant axial stress.Moreover,extension was also achieved by simultaneously increasing radial stress and decreasing axial stress under constant mean stress.The test results showed elastoplastic stress-strain behavior with volumetric compaction until onset of dilatancy at high deviatoric stresses above 80%-90%of the peak failure strength.The strength is dependent upon load path and mean stress.The strength under triaxial compression is higher than that under extension.The respective strength increases with increasing mean stress.Desaturation enhances the stiffness and strength of the claystone.The deformation and strength of the elaystone are time-dependent.Under constant deviatoric stress,the claystone crept continuously with time,which can be characterized by a transient phase and a following stationary phase,and even a tertiary phase at high deviatoric stresses to rupture.
基金This research was conducted within the DECOVALEX-2023 projectDECOVALEX is an international research project comprising participants from industry,government,and academia,focusing on development of understanding,models and codes in complex coupled problems in sub-surface geological and engineering applications.DECOVALEX-2023 is the current phase of the project.The authors appreciate the DECOVALEX-2023 Funding Organisations Andra,BASE,BGE,BGR,CAS,CNSC,COVRA,US DOE,ENRESA,ENSI,JAEA,KAERI,NWMO,RWM,SÚRAO,SSM and Taipower for their financial and technical support of the work described in this paper.The statements made in the paper are,however,solely those of the authors and do not necessarily reflect those of the Funding Organisations.This work was further supported by the German Federal Ministry for Economic Affairs and Climate Action(BMWK).
文摘Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability.
文摘The importance of groundwater portability and the possible sources of anthropogenic contamination have led to the development of intrinsic groundwater vulnerability mapping. In this study, groundwater vulnerability map for Amman Zarqa Basin (AZB) has been generated based on information derived and calculated from processed remote sensing information and laboratory analysis. The database was prepared from soil hydro geological and hydrological data, Digital Elevation Model (DEM), and geological maps. For assessment of groundwater vulnerability, the method proposed by the state geological surveys of Germany (GLA-method) has been adapted and applied. The vulnerability map shows about 77% which is about 2919 Km2 of the AZB is classified as very low to low which could be corresponding to the pollution sources due to the absence of potential hazards and also due to low vulnerabilities. These areas could consequently be interesting for future development as they set preferable in view of ground water protection. In addition, about 14% (530 km2) is classified within the moderate vulnerability zone. About 5% (around 19 km2) of the study area lies under the area of high vulnerability zone. Only 4% can be classified as very high risk areas. Groundwater quality results revealed that water leach ate from point source is the main cause for groundwater contaminations in highly vulnerable karstic limestone aquifer (Amman Wadi Es Sir Aquifer-B2/A7). On the other hand, the Kurnub Sandstone aquifer (K) is generally well protected in the central and eastern part of the AZB due to its thick cover of partly marly sequences. However, the Kurnub aquifer might have a potential risk from the recharged infiltrating surface water from the Zarqa River, which is highly polluted due to industrial activities located along the river.
基金supported by several grantsfrom DAAD,DFG(Wo 489/15-1,15-2KL 692/11-1,11-2)+1 种基金NSERC,NHM CERCAMS,IGCP(IGCP-473)the IGCP project 592 sponsored by IUGS and UNESCO
文摘The Muruntau gold deposit in the Central Kyzylkum,Uzbekistan is one of the largest single gold deposits worldwide.Data available from the literature are reviewed with the aim to(1) integrate the present knowledge on this unique deposit from Russian and English literature;(2) show the considerable progress made in the understanding of the genesis of the Muruntau deposit during the last decades;and(3) point to problems still open for future research.Deposit formation occurred through a multi-stage process involving sedimentation,regional metamorphism including thrusting,magmatism with formation of hornfels aureoles and several stages of hydrothermal activity.According to recent knowledge,synsedimentary or pure metamorphic formation of gold mineralization seems unlikely.The role of granite magmatism occurring roughly within the same time interval as the main hydrothermal gold precipitation remains uncertain.There are no signs of interaction of matter between the magma(s) and the hydrothermal system(s).On the other hand,there was an intense,high-temperature(above 400 ℃)fluid- wall rock interaction resulting in the formation of gold-bearing,cone-like stockworks with veins,veinlets and gold-bearing metasomatites.Several chemical and isotope indicators hint at an involvement of lower-crustal or mantle-related sources as well as of surface waters in ore formation.Deposit formation through brecciation involving explosion,hydrothermal or tectonic breccias might explain these data.Further investigations on breccia formation as well as on the exact timing of relevant sedimentary,metamorphic,magmatic and hydrothermal events are recommended.
文摘For deep geological disposal of high-level radioactive waste(HLW)in granite,the temperature on the HLW canisters is commonly designed to be lower than100fiC.This criterion dictates the dimension of the repository.Based on the concept of HLW disposal in vertical boreholes,thermal process in the nearfield(host rock and buffer)surrounding HLW canisters has been simulated by using different methods.The results are drawn as follows:(a)the initial heat power of HLW canisters is the most important and sensitive parameter for evolution of temperaturefield;(b)the thermal properties and variations of the host rock,the engineered buffer,and possible gaps between canister and buffer and host rock are the additional key factors governing the heat transformation;(c)the gaps width and thefilling by water or air determine the temperature offsets between them.
文摘Sustainable development of urban areas demands,among others,a holistic approach for identification and monitoring of environmental changes caused by human activities.In this study,the human-made impact on the geo-environment is studied through the application of the change detection study based on Principal Component Analysis on Landsat imageries and comparison of the digital elevation models taken at different times.The analysis is set up to identify and quantify the anthropogenic geomorphological changes in the loess landscape in Lanzhou city,Northwest China.Since 2002 Lanzhou has been undergoing a rapid economic development associated with construction boom.Due to limited flat building ground in the narrowed Yellow River Valley and subsequent expansion into the surrounding loess mountains,massive earthworks are conducted for reclamation of the suitable building ground.The results of the change detection analysis show that approximately 10%of the semi-natural study area corresponding to 35 km2 has been reshaped by leveling and terracing since 1994.In particular,the geomorphology was significantly changed in these and adjacent areas.For the single developing area Taipingyang,a moving volume of up to 57 million m3 was roughly estimated.
基金the Bundesministerium für Bildung und Forschung(BMBF)-funded deNBI cloud within German Network for Bioinformatics Infrastructure(de.NBI)(Nos.031A532B,031A533A,031A533B,031A534A,031A535A,031A537A,031A537B,031A537C,031A537D,031A538A)for providing computational resources.Florin Musat was funded by the Helmholtz Association of German Research Centres Grant ERC-RA-0020+2 种基金the Novo Nordisk Foundation through an NNF Young Investigator Award,Grant NNF22OC0071609 ReFuel(grants to F.M.).Song-Can Chen is supported by Marie Skłodowska-Curie Actions 2021(postdoctoral fellowship 101059607 to S.C.C.).All sequencing data generated in this study have been deposited in the Sequence Read Archive under BioProject PRJNA1017987(SAMN37419328-SAMN374193).
文摘The Arctic,an essential ecosystem on Earth,is subject to pronounced anthropogenic pressures,most notable being the climate change and risks of crude oil pollution.As crucial elements of Arctic environments,benthic microbiomes are involved in climate-relevant biogeochemical cycles and hold the potential to remediate upcoming contamination.Yet,the Arctic benthic microbiomes are among the least explored biomes on the planet.Here we combined geochemical analyses,incubation experiments,and microbial community profiling to detail the biogeography and biodegradation potential of Arctic sedimentary microbiomes in the northern Barents Sea.The results revealed a predominance of bacterial and archaea phyla typically found in the deep marine biosphere,such as Chloroflexi,Atribacteria,and Bathyarcheaota.The topmost benthic communities were spatially structured by sedimentary organic carbon,lacking a clear distinction among geographic regions.With increasing sediment depth,the community structure exhibited stratigraphic variability that could be correlated to redox geochemistry of sediments.The benthic microbiomes harbored multiple taxa capable of oxidizing hydrocarbons using aerobic and anaerobic pathways.Incubation of surface sediments with crude oil led to proliferation of several genera from the so-called rare biosphere.These include Alkalimarinus and Halioglobus,previously unrecognized as hydrocarbon-degrading genera,both harboring the full genetic potential for aerobic alkane oxidation.These findings increase our understanding of the taxonomic inventory and functional potential of unstudied benthic microbiomes in the Arctic.