期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Evaluation of Thermal Conductivity and Other Thermophysical Properties of Nanofluids Based on Functionalized (-OH) Mwcnt Nanoparticles Dispersed in Distilled Water
1
作者 Alexandre Melo Oliveira Amir Zacarias Mesquita +2 位作者 João Gabriel de Oliveira Marques Enio Pedone Bandarra Filho Daniel Artur Pinheiro Palma 《Advances in Nanoparticles》 CAS 2023年第1期32-52,共21页
A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids.... A possible way to increase thermal conductivity of working fluids, while keeping pressure drop at acceptable levels, is through nanofluids. Nanofluids are nano-sized particles dispersed in conventional working fluids. A great number of materials have potential to be used in nanoparticles production and then in nanofluids;one of them is Multi-Walled Carbon Nano Tubes (MWCNT). They have thermal conductivity around 3000 W/mK while other materials used as nanoparticles like CuO have thermal conductivity of 76.5 W/mK. Due to this fact, MWCNT nanoparticles have potential to be used in nanofluids production, aiming to increase heat transfer rate in energy systems. In this context, the main goal of this paper is to evaluate from the synthesis to the experimental measurement of thermal conductivity of nanofluid samples based on functionalized (-OH) MWCNT nanoparticles. They will be analyzed nanoparticles with different functionalization degrees (4% wt, 6% wt, and 9% wt). In addition, it will be quantified other thermophysical properties (dynamic viscosity, specific heat and specific mass) of the synthetized nanofluids. So, the present work can contribute with experimental data that will help researches in the study and development of MWCNT nanofluids. According to the results, the maximum increment obtained in thermal conductivity was 10.65% in relation to the base fluid (water). 展开更多
关键词 Nanofluids Multi-Walled Carbon Nano Tubes (MWCNT) Functionalization Degree Thermal Conductivity Thermophysical Properties
下载PDF
The Influence of Geometry on the Fluid Dynamics of Continuous Settler
2
作者 Flávia Daylane Tavares de Luna Andhros Guimarães da Silva Ardson dos Santos Vianna Júnior 《Open Journal of Fluid Dynamics》 2020年第3期164-183,共20页
Settlers are broadly used by industries for separating components with different densities, because they show operational facilities and high efficiency. As they use the action of gravity, they can treat great quantit... Settlers are broadly used by industries for separating components with different densities, because they show operational facilities and high efficiency. As they use the action of gravity, they can treat great quantities of effluents with lower energy expenditure. However, the performance of the settler depends on the streamlines inside the equipment, which, in turn, are influenced by the characteristics of the suspended solids, the geometry, and dimensions of the tank. In this paper, the effect of the settler geometry properties on the hydrodynamic in a vertical circular cylindrical tank was investigated. The evaluated parameters were the feed pipe design, the dimensions of the piece of equipment, and the structure of settler bottom. The numerical simulations were performed using the package ANSYS-CFX 16.0. It was considered a turbulent, isothermal, and stationary flow. The Euler-Euler multiphase model and BSL-RSM model turbulence were applied. The recirculation zones were influenced by the separation tank geometrical form. The modification of the feed pipe in the original project reduced the mixture inside the feedwell. The increase of the sedimentation tank diameter improved the performance of water and solid separation, elevating the efficiency by 10.48%, whilst the increase of the tank depth reduced the separation efficiency by 16.72%, in comparison to the original project. 展开更多
关键词 Settler Design Multiphase Flow Sedimentation Efficiency CIRCULATION
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部