期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Preheating Temperature on the Mechanical and Fracture Properties of Welded Pearlitic Rail Steels 被引量:1
1
作者 Heshmat A. Aglan Sudan Ahmed +1 位作者 Kaushal R. Prayakarao Mahmood Fateh 《Engineering(科研)》 2013年第11期837-843,共7页
The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 30... The effect of preheating temperature on the mechanical and fracture behavior, hardness, and the microstructure of slot welded pearlitic rail steel were studied. Railhead sections with slots were preheated to 200℃, 300℃, 350℃ and 400℃?before gas metal arc filling to simulate defects repair. Another sample, welded at room temperature (RT) with no preheat, was studied in comparison. The parent rail steel has ultimate strength, yield strength and strain to failure of 1146 MPa, 717 MPa and 9.3%, respectively. Optimum values of these properties for the welded rail steels were found to be 1023 MPa, 655 MPa and 4.7%, respectively, for the 200℃ preheat temperature. On this basis, the optimum weld efficiency was found to be 89.2%. The average apparent fracture toughness KI for the parent rail was 127 MPa.m0.5, while that for the optimum welded joint (200℃ preheat) was 116.5 MPa.m0.5. In addition, the average hardness values of the weld, fusion zone, and heat affected zone (HAZ) were 313.5, 332 and 313.6 HB, respectively, while that for parent rail steel was about 360 HB. Dominance of bainite and acicular ferrite phase in the weld microstructure was observed at 200℃ preheat. 展开更多
关键词 Preheat Temperature WELDED RAIL STEELS WELD Microstructure Welding Efficiency FRACTURE TOUGHNESS
下载PDF
Microstructure-Fatigue Crack Propagation Kinetics Relationships of Rail Steels
2
作者 Heshmat A. Aglan Mahmood Fateh 《Journal of Civil Engineering and Architecture》 2010年第9期1-12,共12页
Microstructural analysis and fatigue crack propagation behavior of three types of rail steels, was performed. These are premium pearlitic, austenitic manganese (AM) and bainitic rail steels. Rectangular un-notched a... Microstructural analysis and fatigue crack propagation behavior of three types of rail steels, was performed. These are premium pearlitic, austenitic manganese (AM) and bainitic rail steels. Rectangular un-notched and notched test specimens were machined from railheads of each material using electrical discharge machining (EDM) and used for the mechanical properties and fatigue evaluation respectively. Bainitic steel has the highest yield strength, ultimate strength, and strain to failure as compared to both pearlitic and austenitic manganese steels. Fatigue studies showed that the crack speed for the bainitic steel is lower than that for the pearlitie and the AM steels over the entire range of the energy release rate. The bainitic steel exhibits a higher rate of crack deceleration in the second stage, as indicated by the lower slope of the fatigue crack propagation kinetics curve in comparison with the pearlitic and manganese rail steels. This attests to the superior fatigue damage tolerance of the bainitic rail steel in comparison to pearlitic and austenitic manganese rail steels. Microstructural analysis of the three rail steels revealed that bainitic steel has a more intricate structure than AM and pearlitic steels. AM steel shows very few signs of being work hardened or toughened, which usually increases the mechanical properties of the material. As the number of alloying elements increase, the microstructure of the steel becomes more complex, resulting in the increase of mechanical properties and fatigue fracture resistance of bainitic rail steel. 展开更多
关键词 MICROSTRUCTURE bainitic austenitic and pearlitic rail steels fatigue crack propagation kinetics.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部