The emergency room is the entrance door of hospitals for patients who are in risk of life, and the role of the physiotherapist in this area is recognized as a qualified member of the team, helping to reduce the rate a...The emergency room is the entrance door of hospitals for patients who are in risk of life, and the role of the physiotherapist in this area is recognized as a qualified member of the team, helping to reduce the rate and time of orotracheal intubation, judicious use of invasive mechanical ventilation (MV) and non-invasive ventilation (NIV). The objective was to know the profile and performance of physical therapists in the emergency departments of hospitals in the state of S<span style="white-space:nowrap;">ã</span>o Paulo. Conducted through a semi-structured questionnaire covering personal and professional aspects, and analyzed and described in percentage form. Thirty-six questionnaires were analyzed, and it was observed that 92% provide emergency care, but only 25% work exclusively. Among the main reasons for admission to this sector are: acute respiratory failure (44%) and decreased level of consciousness (36.1%). Regarding the physiotherapeutic resources used in the emergency department, 97.2% make use of NIV, followed by monitoring of MV parameters (94.4%) and modification of parameters (94.4%). We also found that the average time of MV in this sector is 3 to 21 days (50%), and that 33% believe there is delay between indication and installation of NIV. The physiotherapist has much to contribute in emergency units, however, he must be trained through the search for technical and scientific knowledge, thus contributing to the consolidation of this area of expertise.展开更多
Manganese peroxidase (MnP) is a ligninolytic enzyme that is involved in the removal of lignin from the cell wall of plants. This removal facilitates the access of hydrolytic enzymes to the carbohydrate polymers that a...Manganese peroxidase (MnP) is a ligninolytic enzyme that is involved in the removal of lignin from the cell wall of plants. This removal facilitates the access of hydrolytic enzymes to the carbohydrate polymers that are hydrolyzed to simple sugars, which allows the subsequent fermentation to obtain bioproducts, such as ethanol. In this work, response surface methodology (RSM) was employed to optimize the culture conditions on unexpensive substrate for MnP secretion by Trametes villosa. Three independent variables were evaluated (i.e., temperature, moisture content and pH). The crude extract containing MnP was used in the delignification experiment and it caused a reduction in lignin content for all residues tested: 35.05 ± 1.45 (%) for the sugar cane bagasse;63.11 ± 0.06 (%) for the sisal fiber and 39.61 ± 0.39 (%) for the coconut shell, under the reaction conditions tested after 4 hours of fermentation. The preliminary results exhibited the potential application of this enzyme in the removal of lignin from plant residues. However, the conditions should be evaluated and optimized for each residue type.展开更多
The brown mussel Perna perna(Linnaeus,1758)is a valuable resource for aquaculture in tropical and subtropical coastal regions.It presents desirable characteristics for biomonitoring,including being sessile,widely dist...The brown mussel Perna perna(Linnaeus,1758)is a valuable resource for aquaculture in tropical and subtropical coastal regions.It presents desirable characteristics for biomonitoring,including being sessile,widely distributed and abundant,and is a filter-feeder able to accumulate several classes of pollutants(e.g.,metals,hydrocarbons,among others).Mussels’biological responses to pollution exposure can be measured as biomarkers,which include alterations ranging from molecular to physiological levels,to estimate the degree of environmental contamination and its effects on biota.This full review compiles two decades(2000–2020)of literature concerning biological effects on P.perna mussel caused by environmental pollutants(i.e.,metals,hydrocarbons,and emerging pollutants),considering environmental and farm-based biomonitoring.Biochemical markers related to mussels’oxidative status were efficient for the biomonitoring of metals(i.e.,antioxidant enzymes associated with oxidative damage in biomolecules).Genotoxicity and cytotoxicity indicators(i.e.,comet,micronucleus,and neutral red assays)provided a depiction of hydrocarbon contamination.The neutral red assay gave a time-concentration cytotoxic response to a wide range of pollutants,including emerging pollutants(e.g.,pharmaceuticals and biocides)and hydrocarbons.Perna perna hemocyte parameters provided a useful approach for biocide biomonitoring.This paper summarizes useful biomarkers from molecular to physiological levels in this mussel species used to identify and quantify the degree of coastal pollution.An integrated biomarker analysis may provide a way to overcome possible biomarker variations and assess multi-polluted sites.Nevertheless,it is necessary to investigate biomarker variations according to natural factors(e.g.,season and gonad maturation stage)to standardize them for trustworthy biomonitoring.展开更多
文摘The emergency room is the entrance door of hospitals for patients who are in risk of life, and the role of the physiotherapist in this area is recognized as a qualified member of the team, helping to reduce the rate and time of orotracheal intubation, judicious use of invasive mechanical ventilation (MV) and non-invasive ventilation (NIV). The objective was to know the profile and performance of physical therapists in the emergency departments of hospitals in the state of S<span style="white-space:nowrap;">ã</span>o Paulo. Conducted through a semi-structured questionnaire covering personal and professional aspects, and analyzed and described in percentage form. Thirty-six questionnaires were analyzed, and it was observed that 92% provide emergency care, but only 25% work exclusively. Among the main reasons for admission to this sector are: acute respiratory failure (44%) and decreased level of consciousness (36.1%). Regarding the physiotherapeutic resources used in the emergency department, 97.2% make use of NIV, followed by monitoring of MV parameters (94.4%) and modification of parameters (94.4%). We also found that the average time of MV in this sector is 3 to 21 days (50%), and that 33% believe there is delay between indication and installation of NIV. The physiotherapist has much to contribute in emergency units, however, he must be trained through the search for technical and scientific knowledge, thus contributing to the consolidation of this area of expertise.
文摘Manganese peroxidase (MnP) is a ligninolytic enzyme that is involved in the removal of lignin from the cell wall of plants. This removal facilitates the access of hydrolytic enzymes to the carbohydrate polymers that are hydrolyzed to simple sugars, which allows the subsequent fermentation to obtain bioproducts, such as ethanol. In this work, response surface methodology (RSM) was employed to optimize the culture conditions on unexpensive substrate for MnP secretion by Trametes villosa. Three independent variables were evaluated (i.e., temperature, moisture content and pH). The crude extract containing MnP was used in the delignification experiment and it caused a reduction in lignin content for all residues tested: 35.05 ± 1.45 (%) for the sugar cane bagasse;63.11 ± 0.06 (%) for the sisal fiber and 39.61 ± 0.39 (%) for the coconut shell, under the reaction conditions tested after 4 hours of fermentation. The preliminary results exhibited the potential application of this enzyme in the removal of lignin from plant residues. However, the conditions should be evaluated and optimized for each residue type.
基金financed in part by the Coordination of Superior Level Staff Improvement–Brazil(CAPES)–Finance Code 001–[Fernanda Silva dos Santos–doctoral fellowship 88882.457000/2019.1]Federal University of the State of Rio de Janeiro(UNIRIO)–[INOVA UNIRIO IN01/2019 attributed to Natascha Krepsky and INOVA UNIRIO IN01/2019 attributed to Raquel A.F.Neves]+1 种基金Carlos Chagas Filho Foundation for Research Support in the State of Rio de Janeiro-(FAPERJ)–[Number E-26/202.794/2018(CNE)]National Council for Scientific and Technological Development(CNPq)–[Number 301964/2018-1]attributed to Valéria Laneuville Teixeira。
文摘The brown mussel Perna perna(Linnaeus,1758)is a valuable resource for aquaculture in tropical and subtropical coastal regions.It presents desirable characteristics for biomonitoring,including being sessile,widely distributed and abundant,and is a filter-feeder able to accumulate several classes of pollutants(e.g.,metals,hydrocarbons,among others).Mussels’biological responses to pollution exposure can be measured as biomarkers,which include alterations ranging from molecular to physiological levels,to estimate the degree of environmental contamination and its effects on biota.This full review compiles two decades(2000–2020)of literature concerning biological effects on P.perna mussel caused by environmental pollutants(i.e.,metals,hydrocarbons,and emerging pollutants),considering environmental and farm-based biomonitoring.Biochemical markers related to mussels’oxidative status were efficient for the biomonitoring of metals(i.e.,antioxidant enzymes associated with oxidative damage in biomolecules).Genotoxicity and cytotoxicity indicators(i.e.,comet,micronucleus,and neutral red assays)provided a depiction of hydrocarbon contamination.The neutral red assay gave a time-concentration cytotoxic response to a wide range of pollutants,including emerging pollutants(e.g.,pharmaceuticals and biocides)and hydrocarbons.Perna perna hemocyte parameters provided a useful approach for biocide biomonitoring.This paper summarizes useful biomarkers from molecular to physiological levels in this mussel species used to identify and quantify the degree of coastal pollution.An integrated biomarker analysis may provide a way to overcome possible biomarker variations and assess multi-polluted sites.Nevertheless,it is necessary to investigate biomarker variations according to natural factors(e.g.,season and gonad maturation stage)to standardize them for trustworthy biomonitoring.