A birefringence photonic crystal fiber is used for PMD compensation in a single-channel 40Gbit/s-speed optical communi- cation system with CSRZ format. The experimental results of transmission show that the PMD compen...A birefringence photonic crystal fiber is used for PMD compensation in a single-channel 40Gbit/s-speed optical communi- cation system with CSRZ format. The experimental results of transmission show that the PMD compensation system works effectively.展开更多
We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuatio...We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuation(RIA) spectra in the near-infrared region from 800 nm to 1700 nm were obtained. We find that the RIA at 1550 nm is related with hydroxyl(OH^-) absorption defects in addition to the identified self-trapped hole(STH) defects. Moreover, it is proposed and demonstrated that reduced OH^-absorption defects can decrease the RIA at 1550 nm. The RIA at 1550 nm has effectively declined from 27.7 d B/km to 3.0 dB/km through fabrication improvement. Preliminary explanations based on the unique fabrication processes were given to interpret the RIA characteristics of PSC-PCFs. The results show that the PSC-PCFs,which offer great advantages over conventional fibers, are promising and applicable to fiber sensors in harsh environments.展开更多
We present the investigation on deformation of orbital angular momentum (OAM) modes in bending ring-core fibers (RCFs) with different structure sizes through numerical and experimental studies. The effective refra...We present the investigation on deformation of orbital angular momentum (OAM) modes in bending ring-core fibers (RCFs) with different structure sizes through numerical and experimental studies. The effective refractive index differences of even and odd fiber eigenmodes, which constitute OAM±1,1 modes, induced by RCF bending and their impacts on the OAM±1,1 mode intensity distributions are analyzed. Bending experiments are also carried out on three different RCFs, and the results match well with simulation values. It is found that RCFs with smaller inner and outer radii show preferable tolerance to the fiber bending.展开更多
基金This work has been supported by the National Basic ResearchProgram of China (973 Program) (2003CB314907)the NationalNatural Science Foundation of China (90604026 and 60310174)the China Postdoctoral Science Foundation ( 20060400059).
文摘A birefringence photonic crystal fiber is used for PMD compensation in a single-channel 40Gbit/s-speed optical communi- cation system with CSRZ format. The experimental results of transmission show that the PMD compensation system works effectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575012 and 61575013)the National Key Scientific Instrument and Equipment Development Project,China(Grant No.2013YQ040877)
文摘We investigated the steady state gamma-ray radiation response of pure-silica-core photonic crystal fibers(PSC-PCFs)under an accumulated dose of 500 Gy and a dose rate of 2.38 Gy/min. The radiation-induced attenuation(RIA) spectra in the near-infrared region from 800 nm to 1700 nm were obtained. We find that the RIA at 1550 nm is related with hydroxyl(OH^-) absorption defects in addition to the identified self-trapped hole(STH) defects. Moreover, it is proposed and demonstrated that reduced OH^-absorption defects can decrease the RIA at 1550 nm. The RIA at 1550 nm has effectively declined from 27.7 d B/km to 3.0 dB/km through fabrication improvement. Preliminary explanations based on the unique fabrication processes were given to interpret the RIA characteristics of PSC-PCFs. The results show that the PSC-PCFs,which offer great advantages over conventional fibers, are promising and applicable to fiber sensors in harsh environments.
基金supported in part by the National 973Program(No.2014CB340003)the National Nature Science Foundation of China(Nos.61307081,61621064,and 61420106003)the Chuangxin Funding
文摘We present the investigation on deformation of orbital angular momentum (OAM) modes in bending ring-core fibers (RCFs) with different structure sizes through numerical and experimental studies. The effective refractive index differences of even and odd fiber eigenmodes, which constitute OAM±1,1 modes, induced by RCF bending and their impacts on the OAM±1,1 mode intensity distributions are analyzed. Bending experiments are also carried out on three different RCFs, and the results match well with simulation values. It is found that RCFs with smaller inner and outer radii show preferable tolerance to the fiber bending.