期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Sharp interface direct forcing immersed boundary methods: A summary of some algorithms and applications 被引量:7
1
作者 Jianming YANG 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第5期713-730,共18页
Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the l... Body-fitted mesh generation has long been the bottleneck of simulating fluid flows involving complex geometries. Immersed boundary methods are non-boundary-conforming methods that have gained great popularity in the last two decades for their simplicity and flexibility, as well as their non-compromised accuracy. This paper presents a summary of some numerical algori- thms along the line of sharp interface direct forcing approaches and their applications in some practical problems. The algorithms include basic Navier-Stokes solvers, immersed boundary setup procedures, treatments of stationary and moving immersed bounda- ries, and fluid-structure coupling schemes. Applications of these algorithms in particulate flows, flow-induced vibrations, biofluid dynamics, and free-surface hydrodynamics are demonstrated. Some concluding remarks are made, including several future research directions that can further expand the application regime of immersed boundary methods. 展开更多
关键词 immersed boundary methods direct forcing sharp interface method strong coupling schemes fluid-structureinteractions Cartesian grid methods
原文传递
A sharp interface approach for cavitation modeling using volume-of-fluid and ghost-fluid methods 被引量:3
2
作者 Thad Michael Jianming Yang Frederick Stern 《Journal of Hydrodynamics》 SCIE EI CSCD 2017年第6期917-925,共9页
This paper describes a novel sharp interface approach for modeling the cavitation phenomena in incompressible viscous flows. A one-field formulation is adopted for the vapor-liquid two-phase flow and the interface is ... This paper describes a novel sharp interface approach for modeling the cavitation phenomena in incompressible viscous flows. A one-field formulation is adopted for the vapor-liquid two-phase flow and the interface is tracked using a volume of fluid(VOF) method. Phase change at the interface is modeled using a simplification of the Rayleigh-Plesset equation. Interface jump conditions in velocity and pressure field are treated using a level set based ghost fluid method. The level set function is constructed from the volume fraction function. A marching cubes method is used to compute the interface area at the interface grid cells. A parallel fast marching method is employed to propagate interface information into the field. A description of the equations and numerical methods is presented. Results for a cavitating hydrofoil are compared with experimental data. 展开更多
关键词 Incompressible flow two-phase flow cavitation modeling sharp interface method ghost fluid method volume of fluidmethod level set method parallel fast marching method marching cubes method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部