期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Preparation of Polystyrene/Triphenyl Phosphate Composites by Suspension Polymerization and Melt Extrusion Method A Comparative Study 被引量:1
1
作者 Cun-wei Zhang Rong-jie Yang +1 位作者 李向梅 De-qi Yi 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第6期688-696,共9页
Polystyrene (PS)/triphenyl phosphate (TPP) composites were prepared by both suspension polymerization and melt extrusion, and a comparative study of the flame retardance and mechanical properties was carried out. ... Polystyrene (PS)/triphenyl phosphate (TPP) composites were prepared by both suspension polymerization and melt extrusion, and a comparative study of the flame retardance and mechanical properties was carried out. The results showed that suspension polymerization was a better technique than melt extrusion for obtaining good dispersity of the PS/TPP composite. The TPP nanoparticles, which were approximately 50 nm in size, were homogenously and uniformly dispersed in the PS matrix by suspension polymerization in one-step. However, the PS/TPP composite was partially agglomerated, exhibiting irregularly shaped micron-scale particles as a result of melt extrusion. In contrast to the melt extrusion, the limited oxygen index (LOI) of the PS/TPP nanocomposite by suspension polymerization increased to 22.6% from 21.8%, and time to ignition (TTI) increased by 12.3%, the peak heat release rate (PHRR) decreased by 8.5%, and the total heat release (THR) decreased by 11.0%. The mechanical properties of the PS/TPP nanocomposite by suspension polymerization also increased. The tensile strength, elongation at break, and flexural strength increased by 36.4%, 8.5%, and 108%, respectively. 展开更多
关键词 POLYSTYRENE Triphenyl phosphate Flame retardance Suspension polymerization Melt extrusion.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部