In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by selfassembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam)(PHCS-g-PNVCL) in aqueous medium. The employed b...In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by selfassembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam)(PHCS-g-PNVCL) in aqueous medium. The employed biocompatible amphiphilic polymer was synthesized by grafting the carboxyl terminated poly(N-vinylcaprolactam)(PNVCL-COOH) chains onto N-phthaloylchitosan(PHCS) backbone.~1H NMR and FTIR results confirmed the molecular structure of the copolymers. The morphology of the supramicelles assembled by PHCS-g-PNVCL was revealed by means of TEM and polarized light microscope. In solution, the supramicelles were very stable as monitored by DLS and zeta potential measurements. Temperature and p H presented significant influences on the size and size distribution of the supramicelles. These supramicelles with multicompartment hydrophobic cores should be ideal biomimetic systems with promising applications in drug delivery.展开更多
基金NSFC Grants(5140306251273063 and 20774030)+4 种基金China Postdoctoral Science Foundation(2013M541485)111 Project Grant(B08021)the Fundamental Research Funds for the Central Universitiesthe higher school specialized research fund for the doctoral program(20110074110003)the Open Project of Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan(2015BTRC001)for support of this work
文摘In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by selfassembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam)(PHCS-g-PNVCL) in aqueous medium. The employed biocompatible amphiphilic polymer was synthesized by grafting the carboxyl terminated poly(N-vinylcaprolactam)(PNVCL-COOH) chains onto N-phthaloylchitosan(PHCS) backbone.~1H NMR and FTIR results confirmed the molecular structure of the copolymers. The morphology of the supramicelles assembled by PHCS-g-PNVCL was revealed by means of TEM and polarized light microscope. In solution, the supramicelles were very stable as monitored by DLS and zeta potential measurements. Temperature and p H presented significant influences on the size and size distribution of the supramicelles. These supramicelles with multicompartment hydrophobic cores should be ideal biomimetic systems with promising applications in drug delivery.