Fluid intelligence is a cognitive domain that encompasses general reasoning, pattern recognition, and problem-solving abilities independent of task-specific experience. Understanding its genetic and neural underpinnin...Fluid intelligence is a cognitive domain that encompasses general reasoning, pattern recognition, and problem-solving abilities independent of task-specific experience. Understanding its genetic and neural underpinnings is critical yet challenging for predicting human development, lifelong health, and well-being. One approach to address this challenge is to map the network of correlations between intelligence and other constructs. In the current study, we performed a genome-wide association study using fluid intelligence quotient scores from the UK Biobank to explore the genetic architecture of the associations between obesity risk and fluid intelligence. Our results revealed novel common genetic loci (SH2B1, TUFM, ATP2A1, and FOXO3) underlying the association between fluid intelligence and body metabolism. Surprisingly, we demonstrated that SH2B1 variation influenced fluid intelligence independently of its effects on metabolism but partially mediated its association with bilateral hippocampal volume. Consistently, selective genetic ablation of Sh2b1 in the mouse hippocampus, particularly in inhibitory neurons, but not in excitatory neurons, significantly impaired working memory, short-term novel object recognition memory, and behavioral flexibility, but not spatial learning and memory, mirroring the human intellectual performance. Single-cell genetic profiling of Sh2B1-regulated molecular pathways revealed that Sh2b1 deletion resulted in aberrantly enhanced extracellular signal-regulated kinase (ERK) signaling, whereas pharmacological inhibition of ERK signaling reversed the associated behavioral impairment. Our cross-species study thus provides unprecedented insight into the role of SH2B1 in fluid intelligence and has implications for understanding the genetic and neural underpinnings of lifelong mental health and well-being.展开更多
Metastasis is the leading cause of cancer-related death.The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastas...Metastasis is the leading cause of cancer-related death.The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis.Surgery is a common intervention for most primary solid tumors.However,surgical trauma-related systemic inflammation facilitates distant tumor metastasis by increasing the spread and adhesion of tumor cells to vascular endothelial cells(ECs).Currently,there are no effective interventions to prevent distant metastasis.Here,we show that HECTD3 deficiency in ECs significantly reduces tumor metastasis in multiple mouse models.HECTD3 depletion downregulates expression of adhesion molecules,such as VCAM-1,ICAM-1 and E-selectin,in mouse primary ECs and HUVECs stimulated by inflammatory factors and inhibits adhesion of tumor cells to ECs both in vitro and in vivo.We demonstrate that HECTD3 promotes stabilization,nuclear localization and kinase activity of IKKa by ubiquitinating IKKa with K27-and K63-linked polyubiquitin chains at K296,increasing phosphorylation of histone H3 to promote NF-kB target gene transcription.Knockout of HECTD3 in endothelium significantly inhibits tumor cells lung colonization,while conditional knockin promotes that.IKKa kinase inhibitors prevented LPS-induced pulmonary metastasis.These findings reveal the promotional role of the HECTD3-IKKa axis in tumor hematogenous metastasis and providea potential strategy for tumormetastasis prevention.展开更多
基金grants from the National Key Research and Development Program of China (2023YFE0109700)the National Natural Science Foundation of China (82125032, 81930095, 32071023, 82272079, and 32200967)+4 种基金the Science and Technology Commission of Shanghai Municipality (23Y21900500, 2018SHZDZX01, 22XD1420700, 23XD142300, and 23YF1425700)the Shanghai Municipal Commission of Health and Family Planning (GWV-11.1-34, 2020CXJQ01, 2018YJRC03, and 2022XD046)the Innovative research team of high-level local universities in Shanghai (SHSMU-ZDCX20211100)the Guangdong Key Project (2018B030335001)University of Sydney - Fudan University BISA Flagship Research Program. Y.Y. and T.Z. were awarded the fellowship of China Postdoctoral Science Foundation (2021M700851, 2023T160117, and 2022M712125).
文摘Fluid intelligence is a cognitive domain that encompasses general reasoning, pattern recognition, and problem-solving abilities independent of task-specific experience. Understanding its genetic and neural underpinnings is critical yet challenging for predicting human development, lifelong health, and well-being. One approach to address this challenge is to map the network of correlations between intelligence and other constructs. In the current study, we performed a genome-wide association study using fluid intelligence quotient scores from the UK Biobank to explore the genetic architecture of the associations between obesity risk and fluid intelligence. Our results revealed novel common genetic loci (SH2B1, TUFM, ATP2A1, and FOXO3) underlying the association between fluid intelligence and body metabolism. Surprisingly, we demonstrated that SH2B1 variation influenced fluid intelligence independently of its effects on metabolism but partially mediated its association with bilateral hippocampal volume. Consistently, selective genetic ablation of Sh2b1 in the mouse hippocampus, particularly in inhibitory neurons, but not in excitatory neurons, significantly impaired working memory, short-term novel object recognition memory, and behavioral flexibility, but not spatial learning and memory, mirroring the human intellectual performance. Single-cell genetic profiling of Sh2B1-regulated molecular pathways revealed that Sh2b1 deletion resulted in aberrantly enhanced extracellular signal-regulated kinase (ERK) signaling, whereas pharmacological inhibition of ERK signaling reversed the associated behavioral impairment. Our cross-species study thus provides unprecedented insight into the role of SH2B1 in fluid intelligence and has implications for understanding the genetic and neural underpinnings of lifelong mental health and well-being.
基金This work was supported by grants from the National Key Research and Development Program of China(2020YFA0112300 and 2018YFC2000400 to C.C.)the National Postdoctoral Program for Innovative Talents(BX20190088 to F.L.)+2 种基金the National Natural Science Foundation of China(82000817 to F.L.,81773149 to Y.K.,U2102203 and 81830087 to C.C.,82173014 and 81872414 to D.J.,81772847 to R.L.)the China Postdoctoral Science Foundation(2019M662869 to F.L.,182703 and 230794 to Y.K.,CAS Light of West China program(Young Scholar 2021000006 to D.J.)the Yunnan Applied Basic Research Projects(202101AS070050 to C.C.,202001AU070095 to H.L.,2018FB134 to Y.K.,2019FB112 and 202001AW070018 to D.J.).
文摘Metastasis is the leading cause of cancer-related death.The interactions between circulating tumor cells and endothelial adhesion molecules in distant organs is a key step during extravasation in hematogenous metastasis.Surgery is a common intervention for most primary solid tumors.However,surgical trauma-related systemic inflammation facilitates distant tumor metastasis by increasing the spread and adhesion of tumor cells to vascular endothelial cells(ECs).Currently,there are no effective interventions to prevent distant metastasis.Here,we show that HECTD3 deficiency in ECs significantly reduces tumor metastasis in multiple mouse models.HECTD3 depletion downregulates expression of adhesion molecules,such as VCAM-1,ICAM-1 and E-selectin,in mouse primary ECs and HUVECs stimulated by inflammatory factors and inhibits adhesion of tumor cells to ECs both in vitro and in vivo.We demonstrate that HECTD3 promotes stabilization,nuclear localization and kinase activity of IKKa by ubiquitinating IKKa with K27-and K63-linked polyubiquitin chains at K296,increasing phosphorylation of histone H3 to promote NF-kB target gene transcription.Knockout of HECTD3 in endothelium significantly inhibits tumor cells lung colonization,while conditional knockin promotes that.IKKa kinase inhibitors prevented LPS-induced pulmonary metastasis.These findings reveal the promotional role of the HECTD3-IKKa axis in tumor hematogenous metastasis and providea potential strategy for tumormetastasis prevention.