期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Study of main body element of crustal strain and its relationship with moderate-strong earthquakes
1
作者 陈兵 张晓亮 +3 位作者 王庆良 刘文义 王敏 薄万举 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第1期54-61,共8页
In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer princi... In this paper, progress in strain study of blocks and faults by GPS data are discussed, and the concept that active structures between blocks are the main body of crustal strain is clarified. By energy transfer principle of elastic mechanics, the relation between strain around faults and tectonic force on fault surfaces is set up and main body element model of crustal strain is constructed. Finally, the relation between mechanical evolution of model and seismogenic process of Kunlun earthquake (Ms=8.1) is discussed by continuous GPS data of datum stations. The result suggests that the relatively relaxed change under background of strong compressing and shearing may help to trigger moderate-strong earthquakes. 展开更多
关键词 main body element of crustal strain tectonic force on fault surface energy transfer GPS benchmark site postseismic relative relaxation
下载PDF
Analysis of the Motion and Deformation Characteristics along the Zhangjiakou-Bohai Fault 被引量:1
2
作者 Chen Changyun 《Earthquake Research in China》 CSCD 2017年第1期66-78,共13页
We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal... We have collected GPS data in the period of 1999-2007 from the Crustal Motion Observation Network of China along the Zhangjiakou-Bohai fault and its adjacent regions to study the characteristics of present-day crustal horizontal motion velocities in the research zone.Strain rate components are computed in the spheric coordinate system by the least square collocation method.According to the spatial distribution of the principal strain rate,dilation rate and maximum shear strain rate derived from GPS measurements,this paper analyses the deformation of the subordinary faults of the Zhangjiakou-Bohai fault.The principal compression strain rates are apparently greater than the principal extension strain rates.The larger shear strain rate is mainly in and around the Xianghe,Wenan and Tangshan areas in Hebei Province.According to the profiles across different segments of the Zhangjiakou-Bohai fault,the three segments glong the Zhangjiakou-Bohai fault show an obviously left-lateal strike-slip and compression characteristics.By analysis of the motion characteristics of the blocks,e.g.the Yanshan block,North China Plain block,Ordos block,and Ludong-Huanghai block in and around the North China region,this paper speculates that the dynamics of the motion styles of Zhangjiakou-Bohai fault may directly come from the relative movement between the Yanshan block and the North China plain block,and the ultimate dynamics may be the results of the collison between Indian plate and Eurasian plate,and the persistent northeastward extrusion of the Indian plate. 展开更多
关键词 Zhangjiakou-Bohai fault zone Crustal deformation Velocity filed Strain rate filed Left-lateral strike-slip
下载PDF
The Application of GNSS to Fault Deformation Studies
3
作者 Bo Wanju Feng Shengtao +4 位作者 Su Jianfeng Zhou Haitao Du Xuesong Wan Wenni Liu Tianhai 《Earthquake Research in China》 2014年第4期510-519,共10页
Great earthquakes often occur along or near active fault belts. Thus,monitoring and research on fault deformation are quite important. Methods such as short-leveling,shortbaseline and integrated monitoring profile acr... Great earthquakes often occur along or near active fault belts. Thus,monitoring and research on fault deformation are quite important. Methods such as short-leveling,shortbaseline and integrated monitoring profile across fault belts have been used to monitor fault activities for many years. GNSS observations are mainly used to obtain the horizontal velocity field in large areas and to study the activities and deformation of major blocks.GNSS technology has been used to monitor and study the deformation of faults from a different aspects. In this paper,some applications and new explorations of GNSS are discussed. They are:( 1) Research and monitoring of strike-slip activities of faults with GNSS.( 2) Research and monitoring of vertical activities of faults with GNSS.( 3)Investigating the laws of deformation of blocks on the sides of fault zone and setting up strain models to deduce the activities and deformation of faults with respective models and compare the deduced results with the actual measurements across fault. It is concluded that a larger discrepancy between the deduced and the observed deformation indicates a stronger interaction between the blocks,which can be important for predicting the location of a strong earthquake and assessing seismic hazard,as well as the seismicity trend. 展开更多
关键词 GNSS Fault deformation BASELINE LEVELING SEISMICITY Crust block
下载PDF
The Application of the Bursa Model to the Integration of GPS Time Series
4
作者 Wang Ziyan Lin Shu +2 位作者 Wu Yanqiang Zhan Wei Ding Xiaoguang 《Earthquake Research in China》 2014年第1期46-53,共8页
In this paper the method of combining the Bursa model to integrate several regional time series to derive a unified global time series is introduced in detail. Then,an example taken from CMONOC( Crustal Movement Obser... In this paper the method of combining the Bursa model to integrate several regional time series to derive a unified global time series is introduced in detail. Then,an example taken from CMONOC( Crustal Movement Observation Network of China) is used to test if the combination method is feasible. The precision of the integrated time series with the combination method is below 2mm( North),3mm( East),that is same as the results from the direct integration of the time series and the precision of the baseline is below 6mm,which proves that the combination method can be used to integrate several regional time series to derive a unified global time series. 展开更多
关键词 GPS time series INTEGRATION Bursa model
下载PDF
Recent movement changes of main fault zones in the Sichuan-Yunnan region and their relevance to seismic activity 被引量:4
5
作者 LIU Xia MA Jin +3 位作者 DU XueSong ZHU Shuang LI LaYue SUN DongYing 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第6期1267-1282,共16页
The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main... The Wenchuan earthquake occurred near the "triple junction" linking the Bayan Har block, the South China block, and the Sichuan-Yunnan rhombic block, and its influences on the surrounding blocks and the main fault zones in the Sichuan-Yunnan region, i.e., the block boundary zone, cannot be ignored. In this paper, changes of movement and stress of the fault zones before and after a strong earthquake were simulated based on the GPS repetition survey results recently obtained during 1999–2007, 2009–2011, and 2011–2013 with a two-dimensional finite-element contact model and the "block- loading" method. The results show that, before the Wenchuan earthquake, the movement of the Longmenshan fault zone was very slow and its compressive stress accumulated rapidly; after the Wenchuan earthquake, movements toward the E-SSE direction of the Bayan Har, southwestern Yunnan, and rhombic blocks were enhanced, and the dextral and horizontal compressive speeds and annual accumulative compressive stress of the Longmenshan fault zone increased markedly by factors of 4.5, 2.1, and 2.5, respectively. The southern Xianshuihe, Anninghe, Zemuhe, Daliangshan, and Lijiang-Xiaojinhe fault zones accumulated compressive stress rapidly, forming enhanced compressive stress zones along a NE strike crossing the central part of the Sichuan-Yunnan region. The tensional movement of the Xianshuihe fault zone was enhanced and the slip movement in the central part of the zone was reversed in a short time. The changes are tightly related to the medium-intensity earthquakes that occurred during the same period in this region, revealing that the spatial migration of seismic activity is related to changes of movement of the blocks. 展开更多
关键词 Sichuan-Yunnan region Wenchuan earthquake Tectonic block Finite-element analysis Fault
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部