期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic interactions of an integrated vehicle–electromagnetic energy harvester–tire system subject to uneven road excitations
1
作者 Jing Tang Xing Zhe Sun +1 位作者 Sulian Zhou Mingyi Tan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第2期440-456,共17页
An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subje... An investigation is undertaken of an integrated mechanical-electromagnetic coupling system consisting of a rigid vehicle with heave, roll, and pitch motions, four electromagnetic energy harvesters and four tires subject to uneven road excitations in order to improve the passengers' riding comfort and harvest the lost engine energy due to uneven roads. Following the derived mathematical formulations and the proposed solution approaches, the numerical simulations of this interaction system subject to a continuous sinusoidal road excitation and a single ramp impact are completed. The simulation results are presented as the dynamic response curves in the forms of the frequency spectrum and the time history, which reveals the complex interaction characteristics of the system for vibration reductions and energy harvesting performance. It has addressed the coupling effects on the dynamic characteristics of the integrated system caused by: (1) the natural modes and frequencies of the vehicle; (2) the vehicle rolling and pitching motions; (3) different road excitations on four wheels; (4) the time delay of a road ramp to impact both the front and rear wheels, etc., which cannot be tackled by an often used quarter vehicle model. The guidelines for engineering applications are given. The developed coupling model and the revealed concept provide a means with analysis idea to investigate the details of four energy harvester motions for electromagnetic suspension designs in order to replace the current passive vehicle isolators and to harvest the lost engine energy. Potential further research directions are suggested for readers to consider in the future. 展开更多
关键词 Vibration-energy-harvesters Electromagnetic suspensions Mechanical electromagnetic interactions Vehicle dynamics Vibration isolations
下载PDF
Hydrodynamic Coefficients for a 3-D Uniform Flexible Barge UsingWeakly Compressible Smoothed Particle Hydrodynamics 被引量:4
2
作者 Muhammad Zahir Ramli P.Temarel M.Tan 《Journal of Marine Science and Application》 CSCD 2018年第3期330-340,共11页
The numerical modelling of the interactions between water waves and floating structures is significant for different areas of the marine sector, especially seakeeping and prediction of wave-induced loads. Seakeeping a... The numerical modelling of the interactions between water waves and floating structures is significant for different areas of the marine sector, especially seakeeping and prediction of wave-induced loads. Seakeeping analysis involving severe flow fluctuations is still quite challenging even for the conventional RANS method. Particle method has been viewed as alternative for such analysis especially those involving deformable boundary, wave breaking and fluid fragmentation around hull shapes. In this paper, the weakly compressible smoothed particle hydrodynamics(WCSPH), a fully Lagrangian particle method, is applied to simulate the symmetric radiation problem for a stationary barge treated as a flexible body. This is carried out by imposing prescribed forced simple harmonic oscillations in heave, pitch and the two-and three-node distortion modes. The resultant,radiation force predictions, namely added mass and fluid damping coefficients, are compared with results from 3-D potential flow boundary element method and 3-D RANS CFD predictions, in order to verify the adopted modelling techniques for WCSPH.WCSPH were found to be in agreement with most results and could predict the fluid actions equally well in most cases. 展开更多
关键词 WEAKLY COMPRESSIBLE Fluid structure interaction Smoothedparticlehydrodynamics SEAKEEPING HYDROELASTICITY Radiation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部