This paper Presents a review on some developments of numerical methods for linear and nonlinear fluid—solid interaction(FSI)problems with their applications in engineering.The discussion covers the four types of nume...This paper Presents a review on some developments of numerical methods for linear and nonlinear fluid—solid interaction(FSI)problems with their applications in engineering.The discussion covers the four types of numerical methods:(1)mixed finite element(FE)-substructure—subdomain model to deal with linear FSI in a finite domain,such as sloshing,acoustic—structure interactions,pressure waves in fluids,展开更多
Investigation of hydroelastic ship responses has been brought to the attention of the scientific and engineering world for several decades. There are two kinds of high-frequency vibrations in general ship responses to...Investigation of hydroelastic ship responses has been brought to the attention of the scientific and engineering world for several decades. There are two kinds of high-frequency vibrations in general ship responses to a large ocean-going ship in its shipping line, so-called springing and whipping, which are important for the determination of design wave load and fatigue damage as well. Because of the huge scale of an ultra large ore cartier (ULOC), it will suffer seldom slamming events in the ocean. The resonance vibration with high frequency is springing, which is caused by continuous wave excitation. In this paper, the wave-induced vibrations of the ULOC are addressed by experimental and numerical methods according to 2D and 3D hydroelasticity theories and an elastic model under full-load and ballast conditions. The influence of loading conditions on high-frequency vibration is studied both by numerical and experimental results. Wave-induced vibrations are higher under ballast condition including the wave frequency part, the multiple frequencies part, the 2-node and the 3-node vertical bending parts of the hydroelastic responses. The predicted results from the 2D method have less accuracy than the 3D method especially under ballast condition because of the slender-body assumption in the former method. The applicability of the 2D method and the further development of nonlinear effects to 3D method in the prediction of hydroelastic responses of the ULOC are discussed.展开更多
Many researchers have focused their efforts on fatigue failures occurring on weld toes. In recent years, more and more fatigue failures occur on weld roots. Therefore, it is important to explore the behaviour of weld ...Many researchers have focused their efforts on fatigue failures occurring on weld toes. In recent years, more and more fatigue failures occur on weld roots. Therefore, it is important to explore the behaviour of weld root fatigues. This paper investigates numerically the Magnification factors (Mk) for types of semi-elliptical cracks on the weld root of a T-butt joint. The geometry of the joint is determined by four important parameters: crack depth ratio, crack shape ratio, weld leg ratio and weld angle. A singular element approach is used to generate the corresponding finite element meshes. For each set of given four parameters of the semi-elliptical root crack, the corresponding T-butt joint is numerically simulated and its Mk at the deepest point of the weld root crack is obtained for the respective tension and shear loads. The variation range of the four parameters covers 750 cases for each load, totaling 1500 simulations are completed. The numerical results obtained are then represented by the curve to explore the effects of four parameters on the Mk. To obtain an approximate equation representing Mk as a function of the four parameters for each load, a multiple regression method is adopted and the related regression analysis is performed. The error distributions of the two approximate equations are compared with the finite element data. It is confirmed that the obtained approximate functions fit very well to the database from which they are derived. Therefore, these two equations present a valuable reference for engineering applications in T-butt joint designs.展开更多
文摘This paper Presents a review on some developments of numerical methods for linear and nonlinear fluid—solid interaction(FSI)problems with their applications in engineering.The discussion covers the four types of numerical methods:(1)mixed finite element(FE)-substructure—subdomain model to deal with linear FSI in a finite domain,such as sloshing,acoustic—structure interactions,pressure waves in fluids,
基金supported by China Shipbuilding Industry Corporationthe Academy of China Ship Scientific Research Center(Grant No.62101010103)
文摘Investigation of hydroelastic ship responses has been brought to the attention of the scientific and engineering world for several decades. There are two kinds of high-frequency vibrations in general ship responses to a large ocean-going ship in its shipping line, so-called springing and whipping, which are important for the determination of design wave load and fatigue damage as well. Because of the huge scale of an ultra large ore cartier (ULOC), it will suffer seldom slamming events in the ocean. The resonance vibration with high frequency is springing, which is caused by continuous wave excitation. In this paper, the wave-induced vibrations of the ULOC are addressed by experimental and numerical methods according to 2D and 3D hydroelasticity theories and an elastic model under full-load and ballast conditions. The influence of loading conditions on high-frequency vibration is studied both by numerical and experimental results. Wave-induced vibrations are higher under ballast condition including the wave frequency part, the multiple frequencies part, the 2-node and the 3-node vertical bending parts of the hydroelastic responses. The predicted results from the 2D method have less accuracy than the 3D method especially under ballast condition because of the slender-body assumption in the former method. The applicability of the 2D method and the further development of nonlinear effects to 3D method in the prediction of hydroelastic responses of the ULOC are discussed.
基金Project supported by the National Basic Research Program (973 Program) of China (No. 2011CB711102)
文摘Many researchers have focused their efforts on fatigue failures occurring on weld toes. In recent years, more and more fatigue failures occur on weld roots. Therefore, it is important to explore the behaviour of weld root fatigues. This paper investigates numerically the Magnification factors (Mk) for types of semi-elliptical cracks on the weld root of a T-butt joint. The geometry of the joint is determined by four important parameters: crack depth ratio, crack shape ratio, weld leg ratio and weld angle. A singular element approach is used to generate the corresponding finite element meshes. For each set of given four parameters of the semi-elliptical root crack, the corresponding T-butt joint is numerically simulated and its Mk at the deepest point of the weld root crack is obtained for the respective tension and shear loads. The variation range of the four parameters covers 750 cases for each load, totaling 1500 simulations are completed. The numerical results obtained are then represented by the curve to explore the effects of four parameters on the Mk. To obtain an approximate equation representing Mk as a function of the four parameters for each load, a multiple regression method is adopted and the related regression analysis is performed. The error distributions of the two approximate equations are compared with the finite element data. It is confirmed that the obtained approximate functions fit very well to the database from which they are derived. Therefore, these two equations present a valuable reference for engineering applications in T-butt joint designs.