Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to ma...Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.展开更多
Bulked-segregant analysis coupled with next-generation sequencing(BSA-seq) has emerged as an efficient tool for genetic mapping of single genes or major quantitative trait loci controlling(agronomic) traits of interes...Bulked-segregant analysis coupled with next-generation sequencing(BSA-seq) has emerged as an efficient tool for genetic mapping of single genes or major quantitative trait loci controlling(agronomic) traits of interest. However, such a mapping-by-sequencing approach usually relies on deep sequencing and advanced statistical methods. Application of BSA-Seq based on construction of reduced-representation libraries and allele frequency analysis permitted anchoring the barley pale-green(pg) gene on chromosome 3 HL. With further marker-assisted validation, pg was mapped to a 3.9 Mb physical-map interval. In the pg mutant a complete deletion of chlorophyllide a oxygenase(HvCAO) gene was identified.Because the product of this gene converts Chl a to Chl b, the pg mutant is deficient in Chl b.An independent Chl b-less mutant line M4437_2 carried a nonsynonymous substitution(F263 L) in the C domain of HvCAO. The study demonstrates an optimized pooling strategy for fast mapping of agronomically important genes using a segregating population.展开更多
A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that t...A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.展开更多
In the regions where crops were mostly produced by smallholder farmers, the analysis of yield gap is difficult due to diverse cultivars, crop managements and yield levels. In order to find an effective method that can...In the regions where crops were mostly produced by smallholder farmers, the analysis of yield gap is difficult due to diverse cultivars, crop managements and yield levels. In order to find an effective method that can reasonably verify the yield gap and the limiting cultivation factors in narrowing yield gaps in areas that are dominanted by smallholder farmers, we worked out a method consisting five progressive procedures as follows: questionnaire investigation of farmer cultivation regime, identification of yield levels and yield gaps, generalization of key cultivation measurements, reconstruction of representative maize populations, and process-based analysis of yield gap. A case study was carried out in Jiangsu Province, China, in which maize is mostly produced by smallholder farmers. A questionnaire investigation of 1 023 smallholder farmers was carried out firstly, then the frequency distribution of maize yield was simulated by an normal distribution function, and then the covering range and average value of the basic yield, farmer yield and high-yield farmer yield levels were calculated out from the equation. Hereby, the yield gaps 1, 2 and 3 were calculated along with the record highest yield from literature and experts, which were 2 564, 2 346 and 2 073 kg ha^(–1), respectively. Moreover, with the covering range of each yield level, the suveyed farmers belonging to each yield level were grouped together and then their major cultivation measures were traced and generalized. With the generalized cultivation measures, representative maize populations of the four yield levels were reconstructed, and thereby clarifing lots of characters of the populations or single plant of each population with processbased analysis of the reconstructed populations. In this case, the main factors causing the yield gap were plant density, fertilizer application rate, logging caused by hurricane, and damages caused by pests. The case study primarily indicated that this five-step method is feasible and effective in yield gap study, especially in smallholder farmers dominant regions.展开更多
Plant height is an important trait related to yield potential and plant architecture. A suitable plant height plays a crucial role in improvement of rice yield and lodging resistance. In this study, we found that the ...Plant height is an important trait related to yield potential and plant architecture. A suitable plant height plays a crucial role in improvement of rice yield and lodging resistance. In this study, we found that the traditional upland landrace 'Kaowenghan' (KWH) showed a special semi-dwarf phenotype. To identify the semi-dwarf gene from KWH, we raised BC2F4 semi-dwarf introgression lines (IL) by hybridization of the japonica rice cultivar 'Dianjingyoul' (DJY1) and KWH in a DJY1 background. The plant height of the homozygous semi-dwarf IL (IL-87) was significantly reduced compared with that of DJY1. The phenotype of the F1 progeny of the semi-dwarf IL-87 and DJY1 showed that the semi-dwarf phenotype was semi- dominant. QTL mapping indicated that the semi-dwarf phenotype was controlled by a major QTL qDH1 and was localized between the markers RM6696 and RM12047 on chromosome 1. We also developed near-isogenic lines (NIL) from the BC3F3 population, and found that the yield of homozygous NIL (NIL-2) was not significantly different compared to DJY1. Breeding value evaluation through investigation of the plant height of the progeny of NIL (NIL-2) and cultivars from different genetic background indicate that the novel semi-dwarf gene shows potential as a genetic resource for rice breeding.展开更多
In this study,effects of temperature,light and their interactions on allelopathic effects and the functional traits specific leaf area(SLA)and stem mass fraction(SMF)of different allelopathic potential rice accessions...In this study,effects of temperature,light and their interactions on allelopathic effects and the functional traits specific leaf area(SLA)and stem mass fraction(SMF)of different allelopathic potential rice accessions at different growth stages were analyzed.The main results were as follows:Allelopathic responses to temperature and light varied with different allelopathic potential rice accessions at different growth stages.With the rise of temperature and the extension of photoperiod,allelopathic effect increased firstly and then decreased at 2–3 leaf stage,but increased constantly at the 4–5 and 7–8 leaf stages in strong allelopathic rice accessions[O.longistaminata,F1(O.longistaminata×RD23),F2(RL159 and RL169)].Temperature had significant impact on allelopathic effect without considering light factors,but light showed little effect on rice allelopathy at the same temperature conditions.The greatest allelopathic effect was attained with moderate temperature and long photoperiod at 2–3 leaf stage in strong allelopathic rice accessions,but all the rice accessions showed weak allelopathic effects at the low temperature condition(15oC/10oC),and the influence of different factors on allelopathy followed a general trend as temperature>leaf stage>light,indicating that among the multiple factors impacting rice allelopathy,temperature was the main factor.Allelopathic characteristics of F1 and F2 to various temperature and light were similar to O.longistaminata,showing that allelopathic genes from wild rice can be expressed in its descendants.Temperature and light also had significant effects on SLA and SMF,and rice allelopathy was closely correlative to SLA in strong allelopathic rice accessions at the 4–5 and 7–8 leaf stages,but there was no correlation between rice allelopathy and SMF at different growth stages.These results suggested that rice adjust the relationship between allelopathy and SLA and adapt to the varied environments,and that high temperature and long photoperiod can enhance rice allelopathic activity.展开更多
Hybrid sterility between Oryza glaberrima and O. sativa seriously hampers the introgression of favorable genes from each other. In order to further understand this issue, identification and isolation of hybrid sterili...Hybrid sterility between Oryza glaberrima and O. sativa seriously hampers the introgression of favorable genes from each other. In order to further understand this issue, identification and isolation of hybrid sterility QTLs as single Mendelian factors are an effective strategy. A genetic map was constructed using a BC1 F1 population derived from a cross between an O. safiva japonica cultivar and an O. glaberrima accession. Four main-effect QTLs for pollen sterility were detected in the BC1F1. Five BC8F1 advanced backcross populations were developed via successive backcrosses based on phenotype and molecular selections. The BC8F1 populations showed bimodal distribution for pollen fertility and could be classified into semi-sterile and fertile types, fitting single Mendilian factor inheritance ratios. Three QTLs detected in the BC1F1 corresponding to qSS-3, qSS-6a and qSS-7 were mapped on chromosomes 6, 3 and 7, respectively, as single Mendilian factors.展开更多
High yields of wheat are mainly obtained through a high level of nitrogen and irrigation supplementation.However,excessive nitrogen and irrigation supplication increase the risk of lodging.The main objectives of this ...High yields of wheat are mainly obtained through a high level of nitrogen and irrigation supplementation.However,excessive nitrogen and irrigation supplication increase the risk of lodging.The main objectives of this work were to clarify the capacity of lodging resistance of wheat in response to nitrogen and irrigation,as well as to explore the effective ways of improving lodging resistance in a high-yield wheat cultivar.In this study,field experiments were conducted in the 2015-2016 and 2016-2017 growing seasons.A wheat cultivar Jimai 22(JM22),which is widely planted in the northern of Huang-Huai winter wheat region,was grown at Tai’an,Shandong Province,under three nitrogen rates and four irrigation treatments.The lodging risk was increased with increased nitrogen rate,as indicated by increasing lodging index(LI)and lodging rate across both growing seasons.With nitrogen increasing,the plant height,the basal internode length and the center of gravity height,which were positively correlated with LI,increased significantly.While the density of the basal 2nd internode(for culm and leaf sheath)and cell wall component contents,which were negatively correlated with LI,decreased conspicuous along with nitrogen increased.Increasing irrigation supplementation increased the 2nd internode culm wall thickness,breaking strength and leaf sheath density within limits which increased stem strength.Among the treatments,nitrogen application at a rate of 240 kg ha^(-1) and irrigation application at 600 m^(3)ha^(-1) at both the jointing and anthesis stages resulted in the highest yield and strongest stem.A suitable plant height ensures suffcient biomass for high yield,and higher stem stiffness,which was primarily attributed to thicker culm wall,greater density of the culm and leaf sheaths and higher cell wall component contents are the characteristics that should be taken into account to improving wheat lodging resistance.展开更多
Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In t...Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In the present study,we found that the heading-date gene Ghd7 acted as a negative regulator of germination.A mutant of ghd7 showed low sensitivity to exogenous ABA treatment during seed germination.Further investigation revealed reduced accumulation of ABA in mature ghd7 seeds as a consequence of dampened expression of OsNCED genes.Moreover,elevated GA_(3) level was detected in seeds of ghd7 mutant during imbibition course,which was attributed to the induction of genes responsible for the synthesis pathways of bioactive GAs.Thus,Ghd7 inhibits seed germination by increasing the ABA/GA_(3) ratio.Besides revealing pleiotropic effects of Ghd7,our results indicate its role in linking seed germination to growth-phase transition in rice,which would enrich the theoretical basis for future breeding practices.展开更多
[Objectives]The genetic diversity and population genetic structure of 107 inbred lines of maize in Yunnan were analyzed,in order to provide technical support for maize germplasm innovation,genetic improvement of germp...[Objectives]The genetic diversity and population genetic structure of 107 inbred lines of maize in Yunnan were analyzed,in order to provide technical support for maize germplasm innovation,genetic improvement of germplasm resources,variety management,and lay a solid foundation for exploring genes related to fine traits in the future.[Methods]The 107 maize inbred lines generalized in Yunnan were selected,and 45 backbone inbred lines commonly used in China were used as reference for heterotic group classification.On Axiom Maize 56K SNP Array platform,maize SNP chips(56K)were used to scan the whole maize genome,and the NJ-tree model of Treebest was used to construct a phylogenetic tree.Principal component analysis(PCA)was conducted by GCTA(genome-wide complex trait analysis)to reveal the genetic diversity and population genetic structure.[Results]In the 107 Yunnan local inbred lines,5533 uniformly distributed high-quality SNP marker sites were finally detected.Based on the analysis of these SNP marker sites,Nei s gene diversity index(H)of 107 maize germplasm genes was 0.2981-0.5000 with an average value being 0.4832,and polymorphism information content(PIC)values were 0.2536-0.3750 with an average value being 0.3662.The minimum allele frequency value was 0.5000-0.8178 with an average value being 0.5744.The analysis of population genetic structure showed that when K=6,the maximum value of△K was the maximum,which meant that the inbred lines used in this study could be divided into six groups.They were Tangsi Pingtou blood relationship group,PB blood relationship group,335 female blood relationship group,Zi 330 and the Lüda Honggu blood relationship group,unknown group 1 and unknown group 2.No inbred lines were divided into other heterotic groups.Among them,37 inbred lines from the 2 unknown groups could not be classified into the same group as the 10 known heterotic groups in China.The results of principal component analysis showed that the 107 maize inbred lines generalized in Yunnan could be clearly distinguished from the backbone maize inbred lines commonly used in China.Most of the maize inbred lines in Yunnan were concentrated near the reference backbone inbred lines.But some Yunnan inbred lines were far away from the reference inbred lines commonly used in China.[Conclusions]The maize germplasm resources in Yunnan area were rich in genetic diversity,including multiple heterotic groups,and there was a rich genetic basis of breeding parents.They could be clearly distinguished from the backbone inbred lines commonly used in China,and some of them had a long genetic distance from the backbone inbred lines.The resources which have good application potential can be used to create new heterotic groups.展开更多
Plant microRNAs(miRNAs)play important roles in biological processes such as development and stress responses.Although the diverse functions of miRNAs in model organisms have been well studied,their function in wild ri...Plant microRNAs(miRNAs)play important roles in biological processes such as development and stress responses.Although the diverse functions of miRNAs in model organisms have been well studied,their function in wild rice is poorly understood.In this study,high-throughput small RNA sequencing was performed to characterize tissue-specific transcriptomes in Oryza longistaminata.A total of 603 miRNAs,380 known rice miRNAs,72 conserved plant miRNAs,and151 predicted novel miRNAs were identified as being expressed in aerial shoots and rhizomes.Additionally,99 and 79 miRNAs were expressed exclusively or differentially,respectively,in the two tissues,and 144 potential targets were predicted for the differentially expressed miRNAs in the rhizomes.Functional annotation of these targets suggested that transcription factors,including squamosa promoter binding proteins and auxin response factors,function in rhizome growth and development.The expression levels of several miRNAs and target genes in the rhizomes were quantified by RT-PCR,and the results indicated the existence of complex regulatory mechanisms between the miRNAs and their targets.Eight target cleavage sites were verified by RNA ligase-mediated rapid 5′end amplification.These results provide valuable information on the composition,expression and function of miRNAs in O.longistaminata,and will aid in understanding the molecular mechanisms of rhizome development.展开更多
The upper earshoots with higher superiority usually have higher yield potential and higher efficiency.To determine the key period for the asynchronous differentiation of superior and inferior earshoots and how hormone...The upper earshoots with higher superiority usually have higher yield potential and higher efficiency.To determine the key period for the asynchronous differentiation of superior and inferior earshoots and how hormones are involved in this process,a two-year experiment was designed using two maize hybrids:Suyu 41(S41,single-ear hybrid)and AN 101(A101,double-ear hybrid).The results showed that the lag of lower earshoot differentiation was not only caused by the delay of the differentiation starting time but also related to extension of the duration in spikelet differentiation(stageⅡ)and sexual organ formation stage(stageⅣ).From 12 days before silking(DBS),the contents of indole-3-acetic acid(IAA),zeatin riboside(ZR)+zeatin(ZT),and gibberellic acid(GA_(3))in both upper and lower earshoots of the two hybrids increased dramatically and then decreased quickly.ABA slightly increased in the two hybrids and then decreased slowly in S41,while it was maintained at a high level in A101.At 8 DBS,i.e.,the transition period from floret differentiation to sexual organ formation stage,not only the growth of upper-to-lower earshoot difference(ULED),but also the values for ULED of IAA,ZR+ZT and GA_(3)were all significantly higher in S41 than in A101.Furthermore,the upper-to-lower hormone ratios IAA_(U)/AA_(L)and(ZR+ZT)_(U)/(ZR+ZT)_(L)were also much higher in the single-ear hybrid than in the double-ear hybrid,while the GA_(3U)/GA_(3L)and ABA_(U)/ABA_(L)had no significant differences.In addition,the time course of ULED_(hormone)/ULED_(earshoot growth rate)also suggested that the hormones work in different ways in earshoot superiority/inferiority formation.The delayed differentiation of lower ear shoots was conclusively related to the later initiation of differentiation and the longer durations of specific differentiation stages.Compared with the regulating roles of IAA and ZR+ZT in the key period(8 DBS)of superiority/inferiority differentiation,GA_(3) seems to be affected earlier,while ABA contributes little to this process.展开更多
56 Chinese rice core germplasm resources,18 foreign rice germplasm resources and 6 restorer lines are subjected to high temperature stress during flowering period. Based on relative spikelet fertility rate,rice heat r...56 Chinese rice core germplasm resources,18 foreign rice germplasm resources and 6 restorer lines are subjected to high temperature stress during flowering period. Based on relative spikelet fertility rate,rice heat resistance is evaluated. The results show that different resistance to high temperature exists in different varieties,and 6 new rice varieties present high heat resistance.展开更多
Interspecific hybridization plays an important role in rice breeding by broadening access to desirable traits such as disease resistance and improving yields.However,interspecific hybridization is often hindered by hy...Interspecific hybridization plays an important role in rice breeding by broadening access to desirable traits such as disease resistance and improving yields.However,interspecific hybridization is often hindered by hybrid sterility,linkage drag,and distorted segregation.To mine for favorable genes from Oryza glaberrima,we cultivated a series of BC4 introgression lines(ILs)of O.glaberrima in the japonica rice variety background(Dianjingyou 1)in which the IL-2769(BC4F10)showed longer sterile lemmas,wider grains and spreading panicles compared with its receptor parent,suggesting that linkage drag may have occurred.Based on the BC5F2 population,a hybrid sterility locus,S20,a long sterile lemma locus,G1-g,and a new grain width quantitative trait locus(QTL),qGW7,were mapped in the linkage region about 15 centimorgan(cM)from the end of the short arm of chromosome 7.The hybrid sterility locus S20 from O.glaberrima eliminated male gametes of Oryza sativa,and male gametes carrying the alleles of O.sativa in the heterozygotes were aborted completely.In addition,the homozygotes presented a genotype of O.glaberrima,and homozygous O.sativa were not produced.Surprisingly,the linked traits G1-g and qGW7 showed similar segregation distortion.These results indicate that S20 was responsible for the linkage drag.As a large number of detected hybrid sterility loci are widely distributed on rice chromosomes,we suggest that hybrid sterility loci are the critical factors for the linkage drag in interspecific and subspecific hybridization of rice.展开更多
The Central region of Kenya which is the second largest market oriented dairy zone, faces a threat in milk production. The challenge is a disease known as the napier head smut caused by Ustilago kamerunensis. This fun...The Central region of Kenya which is the second largest market oriented dairy zone, faces a threat in milk production. The challenge is a disease known as the napier head smut caused by Ustilago kamerunensis. This fungal microorganism is a facultative pathogen which has been reported to cause yield losses in napier grass (Pennisetum purpureum) ranging from 25% to 46% across the affected areas. Additionally, there are reports of the continual spread of the disease into neighbouring county of Nakuru in Rift-Valley region which is the leading milk producing zone in the country. This scenario of spread is worrying combined with observation of variations in damage levels of napier grass clones across the five counties of Central Kenya. These observations led to the hypothesis that possible differences might be existing among the Ustilago kamerunensis variants in Kenya. Further, the differences in biomass yield losses that are within a certain percentage range mentioned-above, seemed to support the existence of possible differences. Therefore, to inform effective integrated management strategies of the pathogen in case it’s co-evolving, this study sought to determine the molecular differences of Ustilago kamerunensis isolates in affected counties using ITS 1 and 2 regions which are spanned by 5.8S ribosomal RNA gene. The Ustilago kamerunensis propagules were systematically collected from affected counties’ hot spot areas for sequencing and phylogenetic analysis. The study revealed the most affected areas to be within the mean altitude level of 1988.17 ± 71.97 metres above sea level. Further, differences in the growth in vitro and molecular characteristics of the seemingly altitude restricted isolates were observed. The Kiambu, Nyandarau and Nakuru counties isolates clustered together, whereas those of Murang’a, Nyeri and Kirinyaga formed another clade. The sequences of sixteen Ustilago kamerunensis isolates were deposited in GenBank with accession numbers ranging from MG722754 to MG722769. The results suggest the existence of possible genetic divergence of the isolates which might be reflected in their pathogenic potential too. Effective integration of management strategies is vital towards slowing the phenomenon for an optimal mitigation of the disease in Kenya.展开更多
Gibberellin (GA) 2-oxidase plays a key role in the GA catabolic pathway through 2β-hydroxylation.In the present study,we isolated a CaMV 35S-enhancer activation tagged mutant,H032.This mutant exhibited a dominant d...Gibberellin (GA) 2-oxidase plays a key role in the GA catabolic pathway through 2β-hydroxylation.In the present study,we isolated a CaMV 35S-enhancer activation tagged mutant,H032.This mutant exhibited a dominant dwarf and GA-deficient phenotype,with a final stature that was less than half of its wild-type counterpart.The endogenous bioactive GAs are markedly decreased in the H032 mutant,and application of bioactive GAs (GA3 or GA4) can reverse the dwarf phenotype.The integrated T-DNA was detected 12.8 kb upstream of the OsGA2ox6 in the H032 genome by TAIL-PCR.An increased level of OsGA2ox6 mRNA was detected at a high level in the H032 mutant,which might be due to the enhancer role of the CaMV 35S promoter.RNAi and ectopic expression analysis of OsGA2ox6 indicated that the dwarf trait and the decreased levels of bioactive GAs in the H032 mutant were a result of the up-regulation of the OsGA2ox6 gene.BLASTP analysis revealed that OsGA2ox6 belongs to the class III of GA 2-oxidases,which is a novel type of GA2ox that uses C20-GAs (GA12 and/or GA53) as the substrates.Interestingly,we found that a GA biosynthesis inhibitor,paclobutrazol,positively regulated the OsGA2ox6 gene.Unlike the over-expression of OsGA2ox1,which led to a high rate of seed abortion,the H032 mutant retained normal flowering and seed production.These results indicate that OsGA2ox6 mainly affects plant stature,and the dominant dwarf trait of the H032 mutant can be used as an efficient dwarf resource in rice breeding.展开更多
Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here...Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here,we cloned the uridine 5’-diphospho(UDP)-glucosyltransferase gene EDR1(Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds duringgrain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1 YZNcompared to EDR1 YD1,resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality.By analyzing the distribution of the two alleles EDR1 YD1 and EDR1 YZNamong diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1 YD1 and EDR1 YZNvarieties indicated that rice varieties harboring EDR1 YZNand EDR1 YD1 preferentially showed high chalkiness, and low chalkiness,respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice.展开更多
Dear Editor The Asian cultivated rice (Oryza sativa L. ssp japonica and ssp indica) is a staple food crop, and current rice breeding for the utilization of hybrid vigor (heterosis) mainly uses crosses within and b...Dear Editor The Asian cultivated rice (Oryza sativa L. ssp japonica and ssp indica) is a staple food crop, and current rice breeding for the utilization of hybrid vigor (heterosis) mainly uses crosses within and between japonica and indica varieties (Chen and Liu, 2016). However, another cultivated rice, African rice (Oryza glaberrima Steud), has many important traits, such as tolerance to heat, drought, aluminum toxicity, and disease (Brar and Khush, 1997). Hybrids from crosses between species, such as between African and Asian rice varieties, have stronger hybrid vigor and greater yield potential than those within subspecies;展开更多
Dear Editor, Oryza Iongistaminata is an African wild rice species with AA genome type possessing special traits that are highly valued for improving cultivated rice, such as strong resistance to biotic and abiotic str...Dear Editor, Oryza Iongistaminata is an African wild rice species with AA genome type possessing special traits that are highly valued for improving cultivated rice, such as strong resistance to biotic and abiotic stresses (Song et al., 1995) for improving resistance of cultivars, rhizomatousness for perennial breeding (Glover et al., 2010), and self-incompatibility (SI) for new ways to produce hybrid seeds (Ghesquiere, 1986). Deciphering the genome of O. Iongistaminata will be the key to uncovering the mechanism of these hallmark traits and improving cultivated rice.展开更多
基金the National Natural Science Foundation of China(32272049,32261143757)Sustainable Development International Cooperation Program from Bill&Melinda Gates Foundation(2022YFAG1002)+2 种基金the National Key Research and Development Program of China(2020YFE0202300)the Agricultural Science&Technology Innovation Program(CAASZDRW202109)the China Scholarship Council.
文摘Genomic prediction(GP)in plant breeding has the potential to predict and identify the best-performing hybrids based on the genotypes of their parental lines.In a GP experiment,34 elite inbred lines were selected to make 285 single-cross hybrids in a partial-diallel cross design.These lines represented a mini-core collection of Chinese maize germplasm and comprised 18 inbred lines from the Stiff Stalk heterotic group and 16 inbred lines from the Non-Stiff Stalk heterotic group.The parents were genotyped by sequencing and the 285 hybrids were phenotyped for nine yield and yield-related traits at two locations in the summer sowing area(SUS)and three locations in the spring sowing area(SPS)in the main maizeproducing regions of China.Multiple GP models were employed to assess the accuracy of trait prediction in the hybrids.By ten-fold cross-validation,the prediction accuracies of yield performance of the hybrids estimated by the genomic best linear unbiased prediction(GBLUP)model in SUS and SPS were 0.51 and 0.46,respectively.The prediction accuracies of the remaining yield-related traits estimated with GBLUP ranged from 0.49 to 0.86 and from 0.53 to 0.89 in SUS and SPS,respectively.When additive,dominance,epistasis effects,genotype-by-environment interaction,and multi-trait effects were incorporated into the prediction model,the prediction accuracy of hybrid yield performance was improved.The ratio of training to testing population and size of training population optimal for yield prediction were determined.Multiple prediction models can improve prediction accuracy in hybrid breeding.
基金supported by the Young Elite Scientists Sponsorship Program by China Association for Science and Technology (2015QNRC001)the National Natural Science Foundation of China (31370032)+1 种基金the China Agriculture Research System (CARS-05)the Agricultural Science and Technology Innovation Program
文摘Bulked-segregant analysis coupled with next-generation sequencing(BSA-seq) has emerged as an efficient tool for genetic mapping of single genes or major quantitative trait loci controlling(agronomic) traits of interest. However, such a mapping-by-sequencing approach usually relies on deep sequencing and advanced statistical methods. Application of BSA-Seq based on construction of reduced-representation libraries and allele frequency analysis permitted anchoring the barley pale-green(pg) gene on chromosome 3 HL. With further marker-assisted validation, pg was mapped to a 3.9 Mb physical-map interval. In the pg mutant a complete deletion of chlorophyllide a oxygenase(HvCAO) gene was identified.Because the product of this gene converts Chl a to Chl b, the pg mutant is deficient in Chl b.An independent Chl b-less mutant line M4437_2 carried a nonsynonymous substitution(F263 L) in the C domain of HvCAO. The study demonstrates an optimized pooling strategy for fast mapping of agronomically important genes using a segregating population.
基金supported by the Program for the Agricultural Science and Technology Innovation of Hubei Province, China (Grant No. 2007-620-001-03)
文摘A mutant with twisted hulls was found in a breeding population of rice (Oryza sativa L.). The mutant shows less grain weight and inferior grain quality in addition to twisted hulls. Genetic analysis indicated that the phenotype of mutant was controlled by a single recessive gene (temporarily designated as TW(H). To map the TWH gene, an F2 population was generated by crossing the twh mutant to R725, an indica rice variety with normal hulls. For bulked segregant analysis, the bulk of mutant plants was prepared by mixing equal amount of plant tissue from 10 twisted-hull plants and the bulk of normal plants was obtained by pooling equal amount tissue of 10 normal-hull plants. Two hundred and seven pairs of simple sequence repeat (SSR) primers, which are distributed on 12 rice chromosomes, were used for polymorphism analysis of the parents and the two bulks. The TWH locus was initially mapped close to the SSR marker RM526 on chromosome 2. Therefore, further mapping was performed using 50 pairs of SSR primers around the marker RM526. The TWH was delimited between the SSR markers RM14128 and RM208 on the long arm of chromosome 2 at the genetic distances of 1.4 cM and 2.7 cM, respectively. These results provide the foundation for further fine mapping, cloning and functional analysis of the TWH gene.
基金funded by the National Key Research and Development Program of China(2016YFD0300109)。
文摘In the regions where crops were mostly produced by smallholder farmers, the analysis of yield gap is difficult due to diverse cultivars, crop managements and yield levels. In order to find an effective method that can reasonably verify the yield gap and the limiting cultivation factors in narrowing yield gaps in areas that are dominanted by smallholder farmers, we worked out a method consisting five progressive procedures as follows: questionnaire investigation of farmer cultivation regime, identification of yield levels and yield gaps, generalization of key cultivation measurements, reconstruction of representative maize populations, and process-based analysis of yield gap. A case study was carried out in Jiangsu Province, China, in which maize is mostly produced by smallholder farmers. A questionnaire investigation of 1 023 smallholder farmers was carried out firstly, then the frequency distribution of maize yield was simulated by an normal distribution function, and then the covering range and average value of the basic yield, farmer yield and high-yield farmer yield levels were calculated out from the equation. Hereby, the yield gaps 1, 2 and 3 were calculated along with the record highest yield from literature and experts, which were 2 564, 2 346 and 2 073 kg ha^(–1), respectively. Moreover, with the covering range of each yield level, the suveyed farmers belonging to each yield level were grouped together and then their major cultivation measures were traced and generalized. With the generalized cultivation measures, representative maize populations of the four yield levels were reconstructed, and thereby clarifing lots of characters of the populations or single plant of each population with processbased analysis of the reconstructed populations. In this case, the main factors causing the yield gap were plant density, fertilizer application rate, logging caused by hurricane, and damages caused by pests. The case study primarily indicated that this five-step method is feasible and effective in yield gap study, especially in smallholder farmers dominant regions.
基金funded by grants from National Natural Science Foundation of China(31360330)Chinese Academy of Science(XDA08020203)
文摘Plant height is an important trait related to yield potential and plant architecture. A suitable plant height plays a crucial role in improvement of rice yield and lodging resistance. In this study, we found that the traditional upland landrace 'Kaowenghan' (KWH) showed a special semi-dwarf phenotype. To identify the semi-dwarf gene from KWH, we raised BC2F4 semi-dwarf introgression lines (IL) by hybridization of the japonica rice cultivar 'Dianjingyoul' (DJY1) and KWH in a DJY1 background. The plant height of the homozygous semi-dwarf IL (IL-87) was significantly reduced compared with that of DJY1. The phenotype of the F1 progeny of the semi-dwarf IL-87 and DJY1 showed that the semi-dwarf phenotype was semi- dominant. QTL mapping indicated that the semi-dwarf phenotype was controlled by a major QTL qDH1 and was localized between the markers RM6696 and RM12047 on chromosome 1. We also developed near-isogenic lines (NIL) from the BC3F3 population, and found that the yield of homozygous NIL (NIL-2) was not significantly different compared to DJY1. Breeding value evaluation through investigation of the plant height of the progeny of NIL (NIL-2) and cultivars from different genetic background indicate that the novel semi-dwarf gene shows potential as a genetic resource for rice breeding.
基金financially supported by the National Natural Science Foundation of China (Grant No. 31260453)the Science and Technology Innovation Talents Project of Yunnan Province, China (Grant No. 2014HB039)
文摘In this study,effects of temperature,light and their interactions on allelopathic effects and the functional traits specific leaf area(SLA)and stem mass fraction(SMF)of different allelopathic potential rice accessions at different growth stages were analyzed.The main results were as follows:Allelopathic responses to temperature and light varied with different allelopathic potential rice accessions at different growth stages.With the rise of temperature and the extension of photoperiod,allelopathic effect increased firstly and then decreased at 2–3 leaf stage,but increased constantly at the 4–5 and 7–8 leaf stages in strong allelopathic rice accessions[O.longistaminata,F1(O.longistaminata×RD23),F2(RL159 and RL169)].Temperature had significant impact on allelopathic effect without considering light factors,but light showed little effect on rice allelopathy at the same temperature conditions.The greatest allelopathic effect was attained with moderate temperature and long photoperiod at 2–3 leaf stage in strong allelopathic rice accessions,but all the rice accessions showed weak allelopathic effects at the low temperature condition(15oC/10oC),and the influence of different factors on allelopathy followed a general trend as temperature>leaf stage>light,indicating that among the multiple factors impacting rice allelopathy,temperature was the main factor.Allelopathic characteristics of F1 and F2 to various temperature and light were similar to O.longistaminata,showing that allelopathic genes from wild rice can be expressed in its descendants.Temperature and light also had significant effects on SLA and SMF,and rice allelopathy was closely correlative to SLA in strong allelopathic rice accessions at the 4–5 and 7–8 leaf stages,but there was no correlation between rice allelopathy and SMF at different growth stages.These results suggested that rice adjust the relationship between allelopathy and SLA and adapt to the varied environments,and that high temperature and long photoperiod can enhance rice allelopathic activity.
基金funded partially by the Ministry of Science and Technology Foundation of China(Grant No.2006CB708207)the Ministry of Agriculture,China(Grant No.2009ZX08009-107B)
文摘Hybrid sterility between Oryza glaberrima and O. sativa seriously hampers the introgression of favorable genes from each other. In order to further understand this issue, identification and isolation of hybrid sterility QTLs as single Mendelian factors are an effective strategy. A genetic map was constructed using a BC1 F1 population derived from a cross between an O. safiva japonica cultivar and an O. glaberrima accession. Four main-effect QTLs for pollen sterility were detected in the BC1F1. Five BC8F1 advanced backcross populations were developed via successive backcrosses based on phenotype and molecular selections. The BC8F1 populations showed bimodal distribution for pollen fertility and could be classified into semi-sterile and fertile types, fitting single Mendilian factor inheritance ratios. Three QTLs detected in the BC1F1 corresponding to qSS-3, qSS-6a and qSS-7 were mapped on chromosomes 6, 3 and 7, respectively, as single Mendilian factors.
基金supported by the National Key Research and Development Program of China(2017YFD0301001 and 2016YFD0300403)the National Basic Research Program of China(973 Program,2015CB150404)the Shandong Province Mount Tai Industrial Talents Program,China(LJNY2015001)。
文摘High yields of wheat are mainly obtained through a high level of nitrogen and irrigation supplementation.However,excessive nitrogen and irrigation supplication increase the risk of lodging.The main objectives of this work were to clarify the capacity of lodging resistance of wheat in response to nitrogen and irrigation,as well as to explore the effective ways of improving lodging resistance in a high-yield wheat cultivar.In this study,field experiments were conducted in the 2015-2016 and 2016-2017 growing seasons.A wheat cultivar Jimai 22(JM22),which is widely planted in the northern of Huang-Huai winter wheat region,was grown at Tai’an,Shandong Province,under three nitrogen rates and four irrigation treatments.The lodging risk was increased with increased nitrogen rate,as indicated by increasing lodging index(LI)and lodging rate across both growing seasons.With nitrogen increasing,the plant height,the basal internode length and the center of gravity height,which were positively correlated with LI,increased significantly.While the density of the basal 2nd internode(for culm and leaf sheath)and cell wall component contents,which were negatively correlated with LI,decreased conspicuous along with nitrogen increased.Increasing irrigation supplementation increased the 2nd internode culm wall thickness,breaking strength and leaf sheath density within limits which increased stem strength.Among the treatments,nitrogen application at a rate of 240 kg ha^(-1) and irrigation application at 600 m^(3)ha^(-1) at both the jointing and anthesis stages resulted in the highest yield and strongest stem.A suitable plant height ensures suffcient biomass for high yield,and higher stem stiffness,which was primarily attributed to thicker culm wall,greater density of the culm and leaf sheaths and higher cell wall component contents are the characteristics that should be taken into account to improving wheat lodging resistance.
基金This work was supported by the National Key Research and Development Program of China(2017YFD0100406)China Postdoctoral Science Foundation(2019M652606).
文摘Seed dormancy of cultivated rice was largely weakened during the progress of domestication.Correct timing and uniformity of seed germination are important for rapid seedling establishment and highyield production.In the present study,we found that the heading-date gene Ghd7 acted as a negative regulator of germination.A mutant of ghd7 showed low sensitivity to exogenous ABA treatment during seed germination.Further investigation revealed reduced accumulation of ABA in mature ghd7 seeds as a consequence of dampened expression of OsNCED genes.Moreover,elevated GA_(3) level was detected in seeds of ghd7 mutant during imbibition course,which was attributed to the induction of genes responsible for the synthesis pathways of bioactive GAs.Thus,Ghd7 inhibits seed germination by increasing the ABA/GA_(3) ratio.Besides revealing pleiotropic effects of Ghd7,our results indicate its role in linking seed germination to growth-phase transition in rice,which would enrich the theoretical basis for future breeding practices.
基金Study on Maize Variety Management Based on DUS Test and SNP Molecular Fingerprint.
文摘[Objectives]The genetic diversity and population genetic structure of 107 inbred lines of maize in Yunnan were analyzed,in order to provide technical support for maize germplasm innovation,genetic improvement of germplasm resources,variety management,and lay a solid foundation for exploring genes related to fine traits in the future.[Methods]The 107 maize inbred lines generalized in Yunnan were selected,and 45 backbone inbred lines commonly used in China were used as reference for heterotic group classification.On Axiom Maize 56K SNP Array platform,maize SNP chips(56K)were used to scan the whole maize genome,and the NJ-tree model of Treebest was used to construct a phylogenetic tree.Principal component analysis(PCA)was conducted by GCTA(genome-wide complex trait analysis)to reveal the genetic diversity and population genetic structure.[Results]In the 107 Yunnan local inbred lines,5533 uniformly distributed high-quality SNP marker sites were finally detected.Based on the analysis of these SNP marker sites,Nei s gene diversity index(H)of 107 maize germplasm genes was 0.2981-0.5000 with an average value being 0.4832,and polymorphism information content(PIC)values were 0.2536-0.3750 with an average value being 0.3662.The minimum allele frequency value was 0.5000-0.8178 with an average value being 0.5744.The analysis of population genetic structure showed that when K=6,the maximum value of△K was the maximum,which meant that the inbred lines used in this study could be divided into six groups.They were Tangsi Pingtou blood relationship group,PB blood relationship group,335 female blood relationship group,Zi 330 and the Lüda Honggu blood relationship group,unknown group 1 and unknown group 2.No inbred lines were divided into other heterotic groups.Among them,37 inbred lines from the 2 unknown groups could not be classified into the same group as the 10 known heterotic groups in China.The results of principal component analysis showed that the 107 maize inbred lines generalized in Yunnan could be clearly distinguished from the backbone maize inbred lines commonly used in China.Most of the maize inbred lines in Yunnan were concentrated near the reference backbone inbred lines.But some Yunnan inbred lines were far away from the reference inbred lines commonly used in China.[Conclusions]The maize germplasm resources in Yunnan area were rich in genetic diversity,including multiple heterotic groups,and there was a rich genetic basis of breeding parents.They could be clearly distinguished from the backbone inbred lines commonly used in China,and some of them had a long genetic distance from the backbone inbred lines.The resources which have good application potential can be used to create new heterotic groups.
基金supported by the National Natural Science Foundation of China(31271694 and U1302264)
文摘Plant microRNAs(miRNAs)play important roles in biological processes such as development and stress responses.Although the diverse functions of miRNAs in model organisms have been well studied,their function in wild rice is poorly understood.In this study,high-throughput small RNA sequencing was performed to characterize tissue-specific transcriptomes in Oryza longistaminata.A total of 603 miRNAs,380 known rice miRNAs,72 conserved plant miRNAs,and151 predicted novel miRNAs were identified as being expressed in aerial shoots and rhizomes.Additionally,99 and 79 miRNAs were expressed exclusively or differentially,respectively,in the two tissues,and 144 potential targets were predicted for the differentially expressed miRNAs in the rhizomes.Functional annotation of these targets suggested that transcription factors,including squamosa promoter binding proteins and auxin response factors,function in rhizome growth and development.The expression levels of several miRNAs and target genes in the rhizomes were quantified by RT-PCR,and the results indicated the existence of complex regulatory mechanisms between the miRNAs and their targets.Eight target cleavage sites were verified by RNA ligase-mediated rapid 5′end amplification.These results provide valuable information on the composition,expression and function of miRNAs in O.longistaminata,and will aid in understanding the molecular mechanisms of rhizome development.
基金the National Key Research and Development Program of China(2016YFD0300109)。
文摘The upper earshoots with higher superiority usually have higher yield potential and higher efficiency.To determine the key period for the asynchronous differentiation of superior and inferior earshoots and how hormones are involved in this process,a two-year experiment was designed using two maize hybrids:Suyu 41(S41,single-ear hybrid)and AN 101(A101,double-ear hybrid).The results showed that the lag of lower earshoot differentiation was not only caused by the delay of the differentiation starting time but also related to extension of the duration in spikelet differentiation(stageⅡ)and sexual organ formation stage(stageⅣ).From 12 days before silking(DBS),the contents of indole-3-acetic acid(IAA),zeatin riboside(ZR)+zeatin(ZT),and gibberellic acid(GA_(3))in both upper and lower earshoots of the two hybrids increased dramatically and then decreased quickly.ABA slightly increased in the two hybrids and then decreased slowly in S41,while it was maintained at a high level in A101.At 8 DBS,i.e.,the transition period from floret differentiation to sexual organ formation stage,not only the growth of upper-to-lower earshoot difference(ULED),but also the values for ULED of IAA,ZR+ZT and GA_(3)were all significantly higher in S41 than in A101.Furthermore,the upper-to-lower hormone ratios IAA_(U)/AA_(L)and(ZR+ZT)_(U)/(ZR+ZT)_(L)were also much higher in the single-ear hybrid than in the double-ear hybrid,while the GA_(3U)/GA_(3L)and ABA_(U)/ABA_(L)had no significant differences.In addition,the time course of ULED_(hormone)/ULED_(earshoot growth rate)also suggested that the hormones work in different ways in earshoot superiority/inferiority formation.The delayed differentiation of lower ear shoots was conclusively related to the later initiation of differentiation and the longer durations of specific differentiation stages.Compared with the regulating roles of IAA and ZR+ZT in the key period(8 DBS)of superiority/inferiority differentiation,GA_(3) seems to be affected earlier,while ABA contributes little to this process.
基金Supported by Open Project on Food Crop Germplasm Innovation and Genetic Improvement of Hubei Provincial Key Laboratory(2014lzjj02)International Science&Technology Cooperation Program of China(2011DFB31620)Natural Science Foundation of Hubei Province(2014CFA103)
文摘56 Chinese rice core germplasm resources,18 foreign rice germplasm resources and 6 restorer lines are subjected to high temperature stress during flowering period. Based on relative spikelet fertility rate,rice heat resistance is evaluated. The results show that different resistance to high temperature exists in different varieties,and 6 new rice varieties present high heat resistance.
基金The authors thank the Public Technology Service Center,Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences for technical support.This work was supported by“One-Three-Five”Strategic Planning of Chinese Academy of Sciences(2017XTBG-T02)Strategic Leading Science and Technology Program(XDA24030301 and XDA24040308).
文摘Interspecific hybridization plays an important role in rice breeding by broadening access to desirable traits such as disease resistance and improving yields.However,interspecific hybridization is often hindered by hybrid sterility,linkage drag,and distorted segregation.To mine for favorable genes from Oryza glaberrima,we cultivated a series of BC4 introgression lines(ILs)of O.glaberrima in the japonica rice variety background(Dianjingyou 1)in which the IL-2769(BC4F10)showed longer sterile lemmas,wider grains and spreading panicles compared with its receptor parent,suggesting that linkage drag may have occurred.Based on the BC5F2 population,a hybrid sterility locus,S20,a long sterile lemma locus,G1-g,and a new grain width quantitative trait locus(QTL),qGW7,were mapped in the linkage region about 15 centimorgan(cM)from the end of the short arm of chromosome 7.The hybrid sterility locus S20 from O.glaberrima eliminated male gametes of Oryza sativa,and male gametes carrying the alleles of O.sativa in the heterozygotes were aborted completely.In addition,the homozygotes presented a genotype of O.glaberrima,and homozygous O.sativa were not produced.Surprisingly,the linked traits G1-g and qGW7 showed similar segregation distortion.These results indicate that S20 was responsible for the linkage drag.As a large number of detected hybrid sterility loci are widely distributed on rice chromosomes,we suggest that hybrid sterility loci are the critical factors for the linkage drag in interspecific and subspecific hybridization of rice.
文摘The Central region of Kenya which is the second largest market oriented dairy zone, faces a threat in milk production. The challenge is a disease known as the napier head smut caused by Ustilago kamerunensis. This fungal microorganism is a facultative pathogen which has been reported to cause yield losses in napier grass (Pennisetum purpureum) ranging from 25% to 46% across the affected areas. Additionally, there are reports of the continual spread of the disease into neighbouring county of Nakuru in Rift-Valley region which is the leading milk producing zone in the country. This scenario of spread is worrying combined with observation of variations in damage levels of napier grass clones across the five counties of Central Kenya. These observations led to the hypothesis that possible differences might be existing among the Ustilago kamerunensis variants in Kenya. Further, the differences in biomass yield losses that are within a certain percentage range mentioned-above, seemed to support the existence of possible differences. Therefore, to inform effective integrated management strategies of the pathogen in case it’s co-evolving, this study sought to determine the molecular differences of Ustilago kamerunensis isolates in affected counties using ITS 1 and 2 regions which are spanned by 5.8S ribosomal RNA gene. The Ustilago kamerunensis propagules were systematically collected from affected counties’ hot spot areas for sequencing and phylogenetic analysis. The study revealed the most affected areas to be within the mean altitude level of 1988.17 ± 71.97 metres above sea level. Further, differences in the growth in vitro and molecular characteristics of the seemingly altitude restricted isolates were observed. The Kiambu, Nyandarau and Nakuru counties isolates clustered together, whereas those of Murang’a, Nyeri and Kirinyaga formed another clade. The sequences of sixteen Ustilago kamerunensis isolates were deposited in GenBank with accession numbers ranging from MG722754 to MG722769. The results suggest the existence of possible genetic divergence of the isolates which might be reflected in their pathogenic potential too. Effective integration of management strategies is vital towards slowing the phenomenon for an optimal mitigation of the disease in Kenya.
基金supported by grants from the Ministry of Sciences and Technology of China (No. 2005CB120805 and 2006AA10A101)the National Natural Science Foundation of China (No. 30621001 and 30871512)
文摘Gibberellin (GA) 2-oxidase plays a key role in the GA catabolic pathway through 2β-hydroxylation.In the present study,we isolated a CaMV 35S-enhancer activation tagged mutant,H032.This mutant exhibited a dominant dwarf and GA-deficient phenotype,with a final stature that was less than half of its wild-type counterpart.The endogenous bioactive GAs are markedly decreased in the H032 mutant,and application of bioactive GAs (GA3 or GA4) can reverse the dwarf phenotype.The integrated T-DNA was detected 12.8 kb upstream of the OsGA2ox6 in the H032 genome by TAIL-PCR.An increased level of OsGA2ox6 mRNA was detected at a high level in the H032 mutant,which might be due to the enhancer role of the CaMV 35S promoter.RNAi and ectopic expression analysis of OsGA2ox6 indicated that the dwarf trait and the decreased levels of bioactive GAs in the H032 mutant were a result of the up-regulation of the OsGA2ox6 gene.BLASTP analysis revealed that OsGA2ox6 belongs to the class III of GA 2-oxidases,which is a novel type of GA2ox that uses C20-GAs (GA12 and/or GA53) as the substrates.Interestingly,we found that a GA biosynthesis inhibitor,paclobutrazol,positively regulated the OsGA2ox6 gene.Unlike the over-expression of OsGA2ox1,which led to a high rate of seed abortion,the H032 mutant retained normal flowering and seed production.These results indicate that OsGA2ox6 mainly affects plant stature,and the dominant dwarf trait of the H032 mutant can be used as an efficient dwarf resource in rice breeding.
基金supported by the National Natural Science Foundation of China(Grant Nos.U1702231,31360330,31902110)The Science and Technology Projects of Yunnan Province,China(Grant No.202003AD150007)+1 种基金Strategic Leading Science and Technology Program of Chinese Academy of Sciences(Grant Nos.XDA24030301 and XDA24040308)Natural Science Foundation of Yunnan,China(Grant No.2018FA 023)。
文摘Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here,we cloned the uridine 5’-diphospho(UDP)-glucosyltransferase gene EDR1(Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds duringgrain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1 YZNcompared to EDR1 YD1,resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality.By analyzing the distribution of the two alleles EDR1 YD1 and EDR1 YZNamong diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1 YD1 and EDR1 YZNvarieties indicated that rice varieties harboring EDR1 YZNand EDR1 YD1 preferentially showed high chalkiness, and low chalkiness,respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice.
基金This research was supported by grants from the National Basic Research Program of China (2013CB126904), the National Key Research and Development Program of China (2016YFD0100804), the China Postdoc- toral Science Foundation (2016M592502) and the Key Research Program of Guangzhou Science Technology and Innovation Commission (201606201443109).
文摘Dear Editor The Asian cultivated rice (Oryza sativa L. ssp japonica and ssp indica) is a staple food crop, and current rice breeding for the utilization of hybrid vigor (heterosis) mainly uses crosses within and between japonica and indica varieties (Chen and Liu, 2016). However, another cultivated rice, African rice (Oryza glaberrima Steud), has many important traits, such as tolerance to heat, drought, aluminum toxicity, and disease (Brar and Khush, 1997). Hybrids from crosses between species, such as between African and Asian rice varieties, have stronger hybrid vigor and greater yield potential than those within subspecies;
基金This work was supported by the National Natural Science Foundation of China (U1302264) to F.H., the National Basic Research Program of China (2013CB835200, 2013CB835201) and the Department of Sciences and Technology of Yunnan Province (2013GA004) to W.W. and F.H.We would like to thank Xueyan Li of the Kunming Institute of Zoology, Chinese Academy of Science, for helpful discussions. We would also like to thank Andrew Willden for English language editing of the manuscript. No conflict of interest declared.
文摘Dear Editor, Oryza Iongistaminata is an African wild rice species with AA genome type possessing special traits that are highly valued for improving cultivated rice, such as strong resistance to biotic and abiotic stresses (Song et al., 1995) for improving resistance of cultivars, rhizomatousness for perennial breeding (Glover et al., 2010), and self-incompatibility (SI) for new ways to produce hybrid seeds (Ghesquiere, 1986). Deciphering the genome of O. Iongistaminata will be the key to uncovering the mechanism of these hallmark traits and improving cultivated rice.