Forest plays a vital role in the global biogeochemical cycles through a high rate of carbon sequestration and harboring biodiversity.However,local species diversity is declining while also becoming increasingly homoge...Forest plays a vital role in the global biogeochemical cycles through a high rate of carbon sequestration and harboring biodiversity.However,local species diversity is declining while also becoming increasingly homogenized across communities.Although eff ects of local biotic processes(e.g.,speciesα-diversity and stand structural heterogeneity)and environmental factors on aboveground biomass(AGB)have been widely tested,there is a huge knowledge gap for the eff ect of regional biotic processes(i.e.,taxonomic and functionalβ-diversity)in forests.Here,we hypothesized that regional and local environmental factors along with biotic processes jointly regulate AGB through species shifts in tropical forests.Using piecewise structural equation modeling(pSEM),we linked climatic water availability,soil fertility,stand structural heterogeneity(either tree DBH inequality,height inequality,or stand density),speciesα-diversity,taxonomic or functionalβ-diversity(and its two components;β-turnover andβ-richness),and AGB across 189 inventory plots in tropical forests of Sri Lanka.Soil fertility and climatic water availability shaped local and regional biotic processes.Stand structural heterogeneity promoted speciesα-diversity but declinedβ-diversity(but increasedβ-taxonomic turnover).Speciesα-diversity and stand structural heterogeneity promoted AGB whereas taxonomic and functionalβ-diversity declined(butβ-taxonomic turnover increased)AGB.The relationships of AGB with speciesα-diversity andβ-diversity varied from signifi cant to nonsignifi cant positive depending on the specifi c combinations of stand structural heterogeneity metrics used.This study shows that local biotic processes could increase AGB due to the local and regional niche complementarity eff ect whereas the regional biotic processes could restrict AGB due to the regional selection or functional redundancy eff ect under favorable environmental conditions.We argue that biotic homogenization,as well as drought conditions,may have strong divergent impacts on forest functions and that the impacts of tree diversity loss may greatly reduce carbon sequestration.展开更多
Correction to:J.For.Res.https://doi.org/10.1007/s11676-022-01560-8 During production process,the below mentioned errors appeared in the original article and inadvertently published with error.
The influences of trait diversity(i.e.,the niche complementarity effect)and functional composition(i.e.,the mass ratio effect)on aboveground biomass(AGB)is a highly debated topic in forest ecology.Therefore,further st...The influences of trait diversity(i.e.,the niche complementarity effect)and functional composition(i.e.,the mass ratio effect)on aboveground biomass(AGB)is a highly debated topic in forest ecology.Therefore,further studies are needed to explore these mechanisms in unstudied forest ecosystems to enhance our understanding,and to provide guidelines for specific forest management.Here,we hypothesized that functional composition would drive AGB better than trait diversity and stem size inequality in the(sub-)tropical forests of Nepal.Using data from 101 forest plots,we tested 25 structural equation models(SEMs)to link elevation,stem DBH inequality,trait diversity(i.e.,trait richness,evenness,dispersion and divergence),functional composition[i.e.,community-weighted of maximum height mean(CWM of Hmax),specific leaf area(CWM of SLA),leaf dry matter content(CWM of LDMC),and wood density(CWM of WD)]and AGB.The best-fitted SEMs indicated that CWM of Hmax promoted AGB while overruling the impacts of trait diversity indices on AGB.However,low trait diversity indices were linked with higher AGB while overruling the effects of CWM of SLA,LDMC and WD on AGB.In addition,AGB decreased with increasing elevation,whereas stem size inequality did not influence AGB.Our results suggest that divergent species’functional strategies could shape AGB along an altitudinal gradient in tropical forests.We argue that forest management practices should include plant functional traits in the management plan for the co-benefits of biodiversity conservation and carbon sequestration that underpins human wellbeing.展开更多
基金funded by the Swedish Energy Agency (Project No 35586-1) for supporting the fieldworkSpecial Project (No. 521100221033) of Hebei University for the interpretation of results
文摘Forest plays a vital role in the global biogeochemical cycles through a high rate of carbon sequestration and harboring biodiversity.However,local species diversity is declining while also becoming increasingly homogenized across communities.Although eff ects of local biotic processes(e.g.,speciesα-diversity and stand structural heterogeneity)and environmental factors on aboveground biomass(AGB)have been widely tested,there is a huge knowledge gap for the eff ect of regional biotic processes(i.e.,taxonomic and functionalβ-diversity)in forests.Here,we hypothesized that regional and local environmental factors along with biotic processes jointly regulate AGB through species shifts in tropical forests.Using piecewise structural equation modeling(pSEM),we linked climatic water availability,soil fertility,stand structural heterogeneity(either tree DBH inequality,height inequality,or stand density),speciesα-diversity,taxonomic or functionalβ-diversity(and its two components;β-turnover andβ-richness),and AGB across 189 inventory plots in tropical forests of Sri Lanka.Soil fertility and climatic water availability shaped local and regional biotic processes.Stand structural heterogeneity promoted speciesα-diversity but declinedβ-diversity(but increasedβ-taxonomic turnover).Speciesα-diversity and stand structural heterogeneity promoted AGB whereas taxonomic and functionalβ-diversity declined(butβ-taxonomic turnover increased)AGB.The relationships of AGB with speciesα-diversity andβ-diversity varied from signifi cant to nonsignifi cant positive depending on the specifi c combinations of stand structural heterogeneity metrics used.This study shows that local biotic processes could increase AGB due to the local and regional niche complementarity eff ect whereas the regional biotic processes could restrict AGB due to the regional selection or functional redundancy eff ect under favorable environmental conditions.We argue that biotic homogenization,as well as drought conditions,may have strong divergent impacts on forest functions and that the impacts of tree diversity loss may greatly reduce carbon sequestration.
文摘Correction to:J.For.Res.https://doi.org/10.1007/s11676-022-01560-8 During production process,the below mentioned errors appeared in the original article and inadvertently published with error.
基金supported by the Jiangsu Science and Technology Special Project(Grant No.BX2019084)Research Startup Funding at Nanjing Forestry University(Grant No.163010230)the Faculty Startup Funding(to Arshad Ali)for establishing Forest Ecology Research Group at Hebei University(Special Project No.521100221033)。
文摘The influences of trait diversity(i.e.,the niche complementarity effect)and functional composition(i.e.,the mass ratio effect)on aboveground biomass(AGB)is a highly debated topic in forest ecology.Therefore,further studies are needed to explore these mechanisms in unstudied forest ecosystems to enhance our understanding,and to provide guidelines for specific forest management.Here,we hypothesized that functional composition would drive AGB better than trait diversity and stem size inequality in the(sub-)tropical forests of Nepal.Using data from 101 forest plots,we tested 25 structural equation models(SEMs)to link elevation,stem DBH inequality,trait diversity(i.e.,trait richness,evenness,dispersion and divergence),functional composition[i.e.,community-weighted of maximum height mean(CWM of Hmax),specific leaf area(CWM of SLA),leaf dry matter content(CWM of LDMC),and wood density(CWM of WD)]and AGB.The best-fitted SEMs indicated that CWM of Hmax promoted AGB while overruling the impacts of trait diversity indices on AGB.However,low trait diversity indices were linked with higher AGB while overruling the effects of CWM of SLA,LDMC and WD on AGB.In addition,AGB decreased with increasing elevation,whereas stem size inequality did not influence AGB.Our results suggest that divergent species’functional strategies could shape AGB along an altitudinal gradient in tropical forests.We argue that forest management practices should include plant functional traits in the management plan for the co-benefits of biodiversity conservation and carbon sequestration that underpins human wellbeing.