A modified version of the Gauss-Jordan algorithm for performing In-Place matrix inversion without using an augmenting unit matrix was described in a previous article by the author. He had also developed several Struct...A modified version of the Gauss-Jordan algorithm for performing In-Place matrix inversion without using an augmenting unit matrix was described in a previous article by the author. He had also developed several Structural Engineering softwares during his career using that method as their analysis engine. He chose matrix inversion because it was suitable for in-core solution of large numbers of vectors for the same set of equations as encountered in structural analysis of moving, dynamic and seismic loadings. The purpose of this article is to provide its readers with its theoretical background and detailed computations of an In-Place matrix inversion task as well as a Visual Basic routine of the algorithm for direct incorporation into Visual Basic 6TM softwares and Visual Basic for ApplicationsTM macros in MS-ExcelTM spreadsheets to save them time and effort of software development.展开更多
文摘A modified version of the Gauss-Jordan algorithm for performing In-Place matrix inversion without using an augmenting unit matrix was described in a previous article by the author. He had also developed several Structural Engineering softwares during his career using that method as their analysis engine. He chose matrix inversion because it was suitable for in-core solution of large numbers of vectors for the same set of equations as encountered in structural analysis of moving, dynamic and seismic loadings. The purpose of this article is to provide its readers with its theoretical background and detailed computations of an In-Place matrix inversion task as well as a Visual Basic routine of the algorithm for direct incorporation into Visual Basic 6TM softwares and Visual Basic for ApplicationsTM macros in MS-ExcelTM spreadsheets to save them time and effort of software development.