期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effects on Sedimentary Processes via Upper Triassic Climate Forcing Caused by Multiple Impacting and Large Igneous Provinces (LIP)-Rifting/Degassing: Jordanian Platform/Arabian Plate and Germanic Basin/Central Europe
1
作者 Werner Schneider Elias Salameh 《Open Journal of Geology》 CAS 2023年第2期136-170,共35页
Upper Triassic sedimentary systems of both the Arabian Plate and the Germanic Basin reveal climate- and plate tectonic-forced effects through certain time-intervals experienced by architectural elements, lithofacies t... Upper Triassic sedimentary systems of both the Arabian Plate and the Germanic Basin reveal climate- and plate tectonic-forced effects through certain time-intervals experienced by architectural elements, lithofacies types, unconformities, flash flood deposits, maximum flooding surfaces/sequence boundary (MFS/SB), mineralogy, and isotope anomalies. Further, Moon recession and changes of Earth’s rotation velocity (core/mantle boundary) are associated with multiple impacting and large igneous provinces/Mid Oceanic Ridge Basalt, LIP/MORB-rifting/degassing. While acidification (by degassing, sturz-rain) does influence tectosilicates and carbonates, montmorillonite represents a key mineral as transformation of volcanic/impact glass (Tephra) to be found as co-components in and in certain pelite units as “boundary clay-suspicions” (mixture of eolian paleoloess, pelite, paleosol, and tephra → tuffite). Obviously, unconformities and sequence boundaries of both study areas separate and dislocate interrupted ∂<sup>13</sup>C and <sup>87</sup>Sr/<sup>86</sup>Sr-data groups along the isotope curves. Both Proto-Arctic Ocean rifting/degassing comprising kimberlitic pyroclastic eruptions and Neotethys rifting/degassing as well as multiple impacting played the most important role during the Norian, followed by the incipient Central Atlantic Magmatic Provinces rifting since the Rhaetian. The following associations are encountered and dealt with in this study: Sequence boundaries-∂<sup>13</sup>C, maximum flooding surfaces-(FUCs)-∂<sup>13</sup>C, unconformities-plate motion, tephra-pelite-tuffite-montmorillonite. Norian: maximum flooding surfaces (MFSs)-“paleosol”/boundary clay?-rifting-volcanism, Moon/Earth data change. So the Norian (~221 - 206 Ma) hosts anomalous “amalgamated maximum flooding surfaces (MFSs)”, amalgamated paleosol (Jordanian Platform), multiple impacting (~219 - 214 Ma), the maximum opening of the Proto-Arctic Ocean (PAO) (~230 - 200 Ma), Neo-Tethys (NT)-subvolcanic (sills, dikes) in the NE Dead Sea area prior the Rhaetian, and a significant change of Earth/Moon relation data. The study concludes that rare and extreme events are very strongly shaping the geologic constellations in the Earth System. 展开更多
关键词 Endogenic and Impact Drivers Sedimentary Effects Interplay Processing Event-Stratigraphy
下载PDF
The Permian-Triassic Transitional Zone: Jordan, Arabian Plate;Linked to Siberian Large Igneous Province and Neo-Tethys Breakup Degassing via Climate Forcing, Atmospheric Hazard and Metal Toxicity
2
作者 Werner Schneider Elias Salameh 《Open Journal of Geology》 2022年第6期472-503,共32页
End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Severa... End-Permian Gondwana siliciclastics (50 - 70 m) of the Um Irna F exposed along the NE Dead Sea, exhibit carbonate-free fining upward cycles (FUC) deposited during acid flash flood events under tropical climate. Several ferruginous paleosol intercalations cover periods of drying upward formation (DUP) under semiarid/arid climates. Thin grey pelite beds interbedded between paleosol and overlying FUC, are interpreted as tephra deposits sourced in Siberian LIP- and Neo-Tethys (NT)-Degassing. The Wadi Bassat en Nimra-section exhibits the P-T transitional zone where flash flood deposits meet supra-/intertidal sediments of the southward-directed transgressive NT. Decreasing flash-flooding continued through the Lower Scythian (Ma’in F.) during transgression, reworking, and resedimentation. Two euryhaline foraminifera-bearing limestone beds are discussed as indicators for the end of mass extinction (recovery phase: ca. 250.8 - 250.4 Ma) possibly correlating with the Maximum Flooding Surface MFS Tr 10 (ca. 250.5 Ma) on the Arabian Shelf (Khuff cycles B;A). Comparable data from the Germanic Basin as FUC/DUP-cycles, tephrasuspicious “Grey Beds” with high concentrations of As, Co, Pb, Zn, and Cu as well as the U-Pb Age data of the Siberian LIP meet the PTB-Zone between the MFSs Intervals P 40 (ca. 254 Ma)/Tr 10 (ca 250.5 Ma) on the Arabian Shelf. MFS (Tr 10, 20, 30) and SBs resp. on the Arabian Plate, as well as Scythian Substage boundaries correlate with &#8706<sup>13</sup> C-excursions recorded at Musandam, UAE. Thereby, the ratio of greenhouse gases (+climate forcing)/aerosols und tephra (-climate forcing) takes a significant influence on the &#8706<sup>13</sup>C-Variation. 展开更多
关键词 P-T Transition Zone JORDAN Arabian Plate SILICICLASTICS Flash Flood Deposits Neo-Tethys Transgression Siberian LIP Degassing: Acid Rain Tuffs Metal Toxcicity Climate Forcing Milankovitch Croll Cycles Germanic Basin (Correlation) Earth/Moon Interplay Self-Regulation (Autopoiesis)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部