Multi-principal element alloys(MPEAs)composed of thermally stable high-density cuboidal nanoparticles have revealed great potential for high-temperature applications.In this work,we systematically studied the growth b...Multi-principal element alloys(MPEAs)composed of thermally stable high-density cuboidal nanoparticles have revealed great potential for high-temperature applications.In this work,we systematically studied the growth behavior and coarsening kinetics of the cuboidal nanoparticles in Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA.In the initial stage of isothermal aging,the nanoparticles exhibit growth and split behavior,resulting in the improvement of mechanical performance,then the cuboidal nanoparticles retain superior thermal and mechanical stability during long-term isothermal aging.The 288 kJ/mol activation energy of Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA,which is higher than that in Ni-based superalloys,reveals the obvious elemental sluggish diffusion in Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA.Meanwhile,coarsening rate constant determined by the volume diffusion mechanism in Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA is 1–2 orders of magnitude less than that of the traditional Ni-based superalloys.The shortterm regulation and long-term stability of the cuboidal nanoparticles endow the Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA with superior mechanical performance and thermal stability for high temperature applications.展开更多
基金This work was financially supported by the National Key Research and Development Program(2018YFB0703402)the Chinese Academy of Sciences(ZDBS-LY-JSC023)+1 种基金the Industrialization Innovation Team of the Industrial Technology Research Institute of the Chinese Academy of Sciences in Foshan(ZK-TD-2019-04)the Key Specialized Research and Development Breakthrough-Unveiling and Commanding the Special Project Program in Liaoning Province under Grant(2021JH15).
文摘Multi-principal element alloys(MPEAs)composed of thermally stable high-density cuboidal nanoparticles have revealed great potential for high-temperature applications.In this work,we systematically studied the growth behavior and coarsening kinetics of the cuboidal nanoparticles in Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA.In the initial stage of isothermal aging,the nanoparticles exhibit growth and split behavior,resulting in the improvement of mechanical performance,then the cuboidal nanoparticles retain superior thermal and mechanical stability during long-term isothermal aging.The 288 kJ/mol activation energy of Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA,which is higher than that in Ni-based superalloys,reveals the obvious elemental sluggish diffusion in Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA.Meanwhile,coarsening rate constant determined by the volume diffusion mechanism in Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA is 1–2 orders of magnitude less than that of the traditional Ni-based superalloys.The shortterm regulation and long-term stability of the cuboidal nanoparticles endow the Ni_(44)Co_(22)Cr_(22)Al_(6)Nb_(6) MPEA with superior mechanical performance and thermal stability for high temperature applications.