Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square...Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.展开更多
文摘Understanding of the basic properties of the positive semi-definite tensor is a prerequisite for its extensive applications in theoretical and practical fields, especially for its square-root. Uniqueness of the square-root of a positive semi-definite tensor is proven in this paper without resorting to the notion of eigenvalues, eigenvectors and the spectral decomposition of the second-order symmetric tensor.