期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The impact of having an oxygen-rich microporous surface in carbon electrodes for high-power aqueous supercapacitors 被引量:2
1
作者 Servann Herou Maria Crespo Ribadeneyr +4 位作者 Philipp Schlee Hui Luo Liviu Cristian Tanase Christine Roβberg Magdalena Titirici 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期36-48,I0002,共14页
The growth of electrical transportation is crucially important to mitigate rising climate change concerns regarding materials supply.Supercapacitors are high-power devices,particularly suitable for public transportati... The growth of electrical transportation is crucially important to mitigate rising climate change concerns regarding materials supply.Supercapacitors are high-power devices,particularly suitable for public transportation since they can easily store breaking energy due to their high-rate charging ability.Additionally,they can function with two carbon electrodes,which is an advantage due to the abundance of carbon in biomass and other waste materials(i.e.,plastic waste).Newly developed supercapacitive nanocarbons display extremely narrow micropores(<0.8 nm),as it increases drastically the capacitance in aqueous electrolytes.Here,we present a strategy to produce low-cost flexible microporous electrodes with extremely high power density(>100 kW kg^(-1)),using fourty times less activating agent than traditionnal chemically activated carbons.We also demonstrate that the affinity between the carbon and the electrolyte is of paramount importance to maintain rapid ionic diffusion in narrow micropores.Finally,this facile synthesis method shows that low-cost and bio-based free-standing electrode materials with reliable supercapacitive performances can be used in electrochemistry. 展开更多
关键词 Porous carbon materials LIGNIN SUPERCAPACITORS Oxygen groups
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部