Let X={X(t),t 0} be a process with independent increments (PII)such that E=0, D X(t)E 2<∞, lim t→∞D X(t)t=1, and there exists a majoring measure G for the jump △X of X . Under these assu...Let X={X(t),t 0} be a process with independent increments (PII)such that E=0, D X(t)E 2<∞, lim t→∞D X(t)t=1, and there exists a majoring measure G for the jump △X of X . Under these assumptions, using rather a direct method, a Strassen's law of the iterated logarithm (Strassen LIL) is established. As some special cases,the Strassen LIL for homogeneous PII and for partial sum process of i.i.d.random variables are comprised.展开更多
This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for utt-λ2(t)b2(t) △ u =0. The coefficient consists of an increasing smooth function λ and an oscillating smoot...This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for utt-λ2(t)b2(t) △ u =0. The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. The authors’ main interest is devoted to the critical case where one has an interesting interplay between the growing and the oscillating part.展开更多
文摘Let X={X(t),t 0} be a process with independent increments (PII)such that E=0, D X(t)E 2<∞, lim t→∞D X(t)t=1, and there exists a majoring measure G for the jump △X of X . Under these assumptions, using rather a direct method, a Strassen's law of the iterated logarithm (Strassen LIL) is established. As some special cases,the Strassen LIL for homogeneous PII and for partial sum process of i.i.d.random variables are comprised.
文摘This work is concerned with the proof of Lp-Lq decay estimates for solutions of the Cauchy problem for utt-λ2(t)b2(t) △ u =0. The coefficient consists of an increasing smooth function λ and an oscillating smooth and bounded function b which are uniformly separated from zero. The authors’ main interest is devoted to the critical case where one has an interesting interplay between the growing and the oscillating part.