To compare the heterosis levels among various groups of parental lines used extensively in China, identify foundational heterotic groups in parental pools and understand the relationship between genetic distance and h...To compare the heterosis levels among various groups of parental lines used extensively in China, identify foundational heterotic groups in parental pools and understand the relationship between genetic distance and heterosis performance, 16 parental lines with extensive genetic variation were selected from various sub-groups, and 39 hybrid combinations were generated and evaluated in Fujian and Hainan Provinces of China. The main results were as follows: (1) The 16 parental lines can be grouped into 7 sub-groups consisting of 1 maintainer sub-group and 6 restorer sub-groups; (2) Mean grain yield of the restorer lines was higher than that of the maintainer lines, and mean yield of parental lines was higher than that of the hybrid combinations; (3) The two best heterotic patterns were II-32A × G5 and II-32A × G6, moreover, the order of restorer sub-groups according to grain yield, from the highest to lowest, was G7, G6, G5, G4, G3 and G2; High specific combining ability values were observed for combinations of II-32A × G5, II-32A × G6 and Tianfeng A × G7; (4) Hybrid combinations derived from II-32A crossed with 13 restorer lines had higher yield trait values (mid-parent heterosis, better-parent heterosis, standard heterosis over check and specific combining ability) than any other combinations; (5) Genetic distance was positively correlated with panicle number, grain length and length-to-width ratio (P 〈 0.05) and negatively correlated with grain width, grain yield, seed-setting rate, as well as mid-parent heterosis, standard heterosis over check, and specific combining ability for grain yield (P 〈 0.01). These heterotic groups and patterns and their argonomic traits will provide useful information for future hybrid rice breeding programs.展开更多
Induced pluripotent cell mass plays a role in genetic transformation mediated by Agrobacterium. Mature seeds are more recalcitrant to the induction of suitable calli than immature embryos in rice, but the exact molecu...Induced pluripotent cell mass plays a role in genetic transformation mediated by Agrobacterium. Mature seeds are more recalcitrant to the induction of suitable calli than immature embryos in rice, but the exact molecular mechanisms involved remain elusive. In this study, the morphological structure of calli induced from mature seeds and immature embryos were observed under a scanning electron microscope using a paraffin embedded technique. Meanwhile, a total of 2 173 up- and down-regulated genes were identified in calli induced from mature seeds and immature embryos by RNA-seq technique and furtherly confirmed by quantitative real-time PCR. The results revealed the remarkable morphological differences in calli induced from mature seeds and immature embryos, and plant hormone signal transduction and hormone biosynthesis pathways, such as abscisic acid, salicylic acid and jasmonic-isoleucine, were found to play roles in somatic embryogenesis. This study provided comprehensive gene expression sets for mature seeds and immature embryos that were served as an important platform resource for further functional studies in plant embryogenesis.展开更多
Plants usually keep resistance(R)proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth,but R proteins can be rapidly activated upon perceiving pathogen invasion.Pib,the fi...Plants usually keep resistance(R)proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth,but R proteins can be rapidly activated upon perceiving pathogen invasion.Pib,the first cloned blast disease R gene in rice,encoding a nucleotide-binding leucine-rich repeat(NLR)protein,mediates resistance to the blast fungal(Magnaporthe oryzae)isolates carrying the avirulence gene AvrPib.However,the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear.In this study,through map-based cloning and CRISPR-Cas9 gene editing,we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin(YY).Furthermore,an SH3 domain-containing protein,SH3P2,was found to associate with Pib mainly at clathrin-coated vesicles in rice cells,via direct binding with the coiled-coil(CC)domain of Pib.Interestingly,overexpression of SH3P2 in YY compromised Pib-mediated resistance to M.oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death.SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro,suggesting that binding of SH3P2 with Pib undermines its homodimerization.Moreover,SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib,which leads to dissociation of SH3P2 from Pib in the presence of AvrPib.Taken together,our results suggest that SH3P2 functions as a“protector”to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M.oryzae isolates.Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.展开更多
基金supported by grants from the Hi-Tech Research and Development(863)Program of China(Grant Nos.2014AA10A603 and 2014AA10A604)the Special Foundation of Non-Profit Research Institutes of Fujian Province,China(Grant No.2015R1021-8)
文摘To compare the heterosis levels among various groups of parental lines used extensively in China, identify foundational heterotic groups in parental pools and understand the relationship between genetic distance and heterosis performance, 16 parental lines with extensive genetic variation were selected from various sub-groups, and 39 hybrid combinations were generated and evaluated in Fujian and Hainan Provinces of China. The main results were as follows: (1) The 16 parental lines can be grouped into 7 sub-groups consisting of 1 maintainer sub-group and 6 restorer sub-groups; (2) Mean grain yield of the restorer lines was higher than that of the maintainer lines, and mean yield of parental lines was higher than that of the hybrid combinations; (3) The two best heterotic patterns were II-32A × G5 and II-32A × G6, moreover, the order of restorer sub-groups according to grain yield, from the highest to lowest, was G7, G6, G5, G4, G3 and G2; High specific combining ability values were observed for combinations of II-32A × G5, II-32A × G6 and Tianfeng A × G7; (4) Hybrid combinations derived from II-32A crossed with 13 restorer lines had higher yield trait values (mid-parent heterosis, better-parent heterosis, standard heterosis over check and specific combining ability) than any other combinations; (5) Genetic distance was positively correlated with panicle number, grain length and length-to-width ratio (P 〈 0.05) and negatively correlated with grain width, grain yield, seed-setting rate, as well as mid-parent heterosis, standard heterosis over check, and specific combining ability for grain yield (P 〈 0.01). These heterotic groups and patterns and their argonomic traits will provide useful information for future hybrid rice breeding programs.
基金supported by grants from the Hi-tech Research and Development(863)Program of China(Grant Nos.2014AA10A603 and 2014AA10A604)the National Major Projects of Cultivated Transgenic New Crop Varieties Foundation of China(Grant Nos.2016ZX001006 and 2016ZX08001004)the Special Foundation of Non-Profit Research Institutes of Fujian Province,China(Grant No.2015R1021-7)
文摘Induced pluripotent cell mass plays a role in genetic transformation mediated by Agrobacterium. Mature seeds are more recalcitrant to the induction of suitable calli than immature embryos in rice, but the exact molecular mechanisms involved remain elusive. In this study, the morphological structure of calli induced from mature seeds and immature embryos were observed under a scanning electron microscope using a paraffin embedded technique. Meanwhile, a total of 2 173 up- and down-regulated genes were identified in calli induced from mature seeds and immature embryos by RNA-seq technique and furtherly confirmed by quantitative real-time PCR. The results revealed the remarkable morphological differences in calli induced from mature seeds and immature embryos, and plant hormone signal transduction and hormone biosynthesis pathways, such as abscisic acid, salicylic acid and jasmonic-isoleucine, were found to play roles in somatic embryogenesis. This study provided comprehensive gene expression sets for mature seeds and immature embryos that were served as an important platform resource for further functional studies in plant embryogenesis.
基金This work was supported by the National Key R&D Program Foundation of China(grant no.2016YFD0300508)the National Rice Industry Technology System of Modern Agriculture for China(grant no.CARS-01-20)+2 种基金the“5511”Collaborative Innovation Project for High-Quality Development and Surpasses of Agriculture between Government of Fujian and Chinese Academy of Agricultural Sciences(grant no.XTCXGC2021001)Key Program of Science and Technology in Fujian province,China(no.2020NZ08016)the Special Foundation of Non-Profit Research Institutes of Fujian Province(grant no.2018R1021-5).
文摘Plants usually keep resistance(R)proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth,but R proteins can be rapidly activated upon perceiving pathogen invasion.Pib,the first cloned blast disease R gene in rice,encoding a nucleotide-binding leucine-rich repeat(NLR)protein,mediates resistance to the blast fungal(Magnaporthe oryzae)isolates carrying the avirulence gene AvrPib.However,the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear.In this study,through map-based cloning and CRISPR-Cas9 gene editing,we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin(YY).Furthermore,an SH3 domain-containing protein,SH3P2,was found to associate with Pib mainly at clathrin-coated vesicles in rice cells,via direct binding with the coiled-coil(CC)domain of Pib.Interestingly,overexpression of SH3P2 in YY compromised Pib-mediated resistance to M.oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death.SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro,suggesting that binding of SH3P2 with Pib undermines its homodimerization.Moreover,SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib,which leads to dissociation of SH3P2 from Pib in the presence of AvrPib.Taken together,our results suggest that SH3P2 functions as a“protector”to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M.oryzae isolates.Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.