New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and hete...New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.展开更多
In this work, we consider device-to-device (D2D) direct communication underlaying a 3GPP LTE-A network. D2D communication enables new service opportunities, provides high throughput and reliable communication while re...In this work, we consider device-to-device (D2D) direct communication underlaying a 3GPP LTE-A network. D2D communication enables new service opportunities, provides high throughput and reliable communication while reducing the base station load. For better total performance, D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. We propose a radio resource allocation for D2D links based on interference avoidance approach. For system with multiple transmit antennas, we apply beamforming technique based on signal to leakage criterion to reduce the co-channel interference. The results show that, D2D transmission with the resource allocation and beamforming technique provides significant gain compared to that of the regular cellular network.展开更多
We have demonstrated that the AGC signals generated in a master EDFA can be used to drive a slave EDFA, thus to make the slave EDFA work in AGC mode without its own AGC control electronics. This idea can be used to re...We have demonstrated that the AGC signals generated in a master EDFA can be used to drive a slave EDFA, thus to make the slave EDFA work in AGC mode without its own AGC control electronics. This idea can be used to reduce the amplifier costs in a WDM network node.展开更多
We have demonstrated a flexible twin open ring WDM network for metro applications. A pair of optical switches in the network keeps the fiber rings open to prevent signal circulation. Traffics are broadcast to every no...We have demonstrated a flexible twin open ring WDM network for metro applications. A pair of optical switches in the network keeps the fiber rings open to prevent signal circulation. Traffics are broadcast to every node and selected at the receiving side. Superior transmission and protection switching are proved.展开更多
文摘New and emerging use cases, such as the interconnection of geographically distributed data centers(DCs), are drawing attention to the requirement for dynamic end-to-end service provisioning, spanning multiple and heterogeneous optical network domains. This heterogeneity is, not only due to the diverse data transmission and switching technologies, but also due to the different options of control plane techniques. In light of this, the problem of heterogeneous control plane interworking needs to be solved, and in particular, the solution must address the specific issues of multi-domain networks, such as limited domain topology visibility, given the scalability and confidentiality constraints. In this article, some of the recent activities regarding the Software-Defined Networking(SDN) orchestration are reviewed to address such a multi-domain control plane interworking problem. Specifically, three different models, including the single SDN controller model, multiple SDN controllers in mesh, and multiple SDN controllers in a hierarchical setting, are presented for the DC interconnection network with multiple SDN/Open Flow domains or multiple Open Flow/Generalized Multi-Protocol Label Switching( GMPLS) heterogeneous domains. I n addition, two concrete implementations of the orchestration architectures are detailed, showing the overall feasibility and procedures of SDN orchestration for the end-to-endservice provisioning in multi-domain data center optical networks.
文摘In this work, we consider device-to-device (D2D) direct communication underlaying a 3GPP LTE-A network. D2D communication enables new service opportunities, provides high throughput and reliable communication while reducing the base station load. For better total performance, D2D links and cellular links share the same radio resource and the management of interference becomes a crucial task. We propose a radio resource allocation for D2D links based on interference avoidance approach. For system with multiple transmit antennas, we apply beamforming technique based on signal to leakage criterion to reduce the co-channel interference. The results show that, D2D transmission with the resource allocation and beamforming technique provides significant gain compared to that of the regular cellular network.
文摘We have demonstrated that the AGC signals generated in a master EDFA can be used to drive a slave EDFA, thus to make the slave EDFA work in AGC mode without its own AGC control electronics. This idea can be used to reduce the amplifier costs in a WDM network node.
文摘We have demonstrated a flexible twin open ring WDM network for metro applications. A pair of optical switches in the network keeps the fiber rings open to prevent signal circulation. Traffics are broadcast to every node and selected at the receiving side. Superior transmission and protection switching are proved.