The pressure-induced structural evolution of apatite-type La9.33Si6026 was systematically studied using in situ syn- chrotron x-ray diffraction (XRD). The XRD spectra indicated that a subtly reversible phase transit...The pressure-induced structural evolution of apatite-type La9.33Si6026 was systematically studied using in situ syn- chrotron x-ray diffraction (XRD). The XRD spectra indicated that a subtly reversible phase transition from P63/m to P63 symmetry occurred at ~ 13.6 GPa because of the tilting of the SiO4 tetrahedra under compression. Furthermore, the La9.33Si6026 exhibited a higher axial compression ratio for the a-axis than the c-axis, owing to the different axial arrange- ment of the SiO4 tetrahedra. Interestingly, the high-pressure phase showed compressibility unusually higher than that of the initial phase, suggesting that the low P63 symmetry provided more degrees of freedom. Moreover, the La9.33Si6026 exhibited a lower phase transition pressure (PT) and a higher lattice compression than LaloSi6027. Comparisons between La9.33Si6026 and LaloSi6027 provided a deeper understanding of the effect of interstitial oxygen atoms on the structural evolution of apatite-type lanthanum silicates (ATLSs).展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2015AQ010 and ZR2016FB16)the Open Project Fund of State Key Laboratory of Superhard Materials of China(Grant No.201509)
文摘The pressure-induced structural evolution of apatite-type La9.33Si6026 was systematically studied using in situ syn- chrotron x-ray diffraction (XRD). The XRD spectra indicated that a subtly reversible phase transition from P63/m to P63 symmetry occurred at ~ 13.6 GPa because of the tilting of the SiO4 tetrahedra under compression. Furthermore, the La9.33Si6026 exhibited a higher axial compression ratio for the a-axis than the c-axis, owing to the different axial arrange- ment of the SiO4 tetrahedra. Interestingly, the high-pressure phase showed compressibility unusually higher than that of the initial phase, suggesting that the low P63 symmetry provided more degrees of freedom. Moreover, the La9.33Si6026 exhibited a lower phase transition pressure (PT) and a higher lattice compression than LaloSi6027. Comparisons between La9.33Si6026 and LaloSi6027 provided a deeper understanding of the effect of interstitial oxygen atoms on the structural evolution of apatite-type lanthanum silicates (ATLSs).