Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further...Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.展开更多
Alum has an excellent safety record and is the only licensed inorganic adjuvant for human vaccines.However,the exploration of alum nanosheets as chemotherapy drug delivery system,especially the clarification about the...Alum has an excellent safety record and is the only licensed inorganic adjuvant for human vaccines.However,the exploration of alum nanosheets as chemotherapy drug delivery system,especially the clarification about the relationship between structures and drug loading properties,is totally insufficient.Herein,aluminum hydroxides(AlOOH)nanosheets with tunable specific surface area and pore size were synthesized by adjusting the synthesis time in the presence of triblock copolymers.The obtained materials exhibited the highest surface area about 470 m2/g.The structure-dependent chemotherapy drug loading capability for AlOOH nanosheets was observed:the higher specific surface area and pore size are,the higher amount of chemotherapy drug is loaded.AlOOH nanosheets loaded with doxorubicin showed a pH-dependent sustained release behavior with quick release in low pH about 5 and slow release in pH around 7.4.Doxorubicin-loaded AlOOH nanosheets exhibited much higher cancer cellular uptake efficiency than that in free form by flow cytometry.Moreover,doxorubicin-loaded AlOOH nanosheets with high specific surface area showed an increased cellular uptake efficiency and enhanced ratios of apoptosis and necrosis,compared with those showing low specific surface area.Therefore,AlOOH nanosheets are promising materials as chemotherapy drug delivery system.展开更多
基金the China Scholarship Council(CSC)for the financial support(202206230096)D.Yu would like to thank the CSC for the Doctor scholarship(202006360037)+1 种基金J.Dutta would like to acknowledge the partial financial support of VINNOVA project no.2021-02313.PZhang would like to acknowledge partial financial support from the National Natural Science Foundation of China(Nos 52111530187,51972210).
文摘Transition metal phosphides(TMPs)have emerged as an alternative to precious metals as efficient and low-cost catalysts for water electrolysis.Elemental doping and morphology control are effective approaches to further improve the performance of TMPs.Herein,Fe-doped CoP nanoframes(Fe-CoP NFs)with specific open cage configuration were designed and synthesized.The unique nano-framework structured Fe-CoP material shows overpotentials of only 255 and 122 mV at 10 mA cm^(−2)for oxygen evolution reaction(OER)and hydrogen evolution reaction(HER),respectively,overwhelming most transition metal phosphides.For overall water splitting,the cell voltage is 1.65 V for Fe-CoP NFs at a current density of 10 mA cm^(−2),much superior to what is observed for the classical nanocubic structures.Fe-CoP NFs show no activity degradation up to 100 h which contrasts sharply with the rapidly decaying performance of noble metal catalyst reference.The superior electrocatalytic performance of Fe-CoP NFs due to abundant accessible active sites,reduced kinetic energy barrier,and preferable*O-containing intermediate adsorption is demonstrated through experimental observations and theoretical calculations.Our findings could provide a potential method for the preparation of multifunctional material with hollow structures and offer more hopeful prospects for obtaining efficient earth-abundant catalysts for water splitting.
基金National Institute for Materials Science of Japan
文摘Alum has an excellent safety record and is the only licensed inorganic adjuvant for human vaccines.However,the exploration of alum nanosheets as chemotherapy drug delivery system,especially the clarification about the relationship between structures and drug loading properties,is totally insufficient.Herein,aluminum hydroxides(AlOOH)nanosheets with tunable specific surface area and pore size were synthesized by adjusting the synthesis time in the presence of triblock copolymers.The obtained materials exhibited the highest surface area about 470 m2/g.The structure-dependent chemotherapy drug loading capability for AlOOH nanosheets was observed:the higher specific surface area and pore size are,the higher amount of chemotherapy drug is loaded.AlOOH nanosheets loaded with doxorubicin showed a pH-dependent sustained release behavior with quick release in low pH about 5 and slow release in pH around 7.4.Doxorubicin-loaded AlOOH nanosheets exhibited much higher cancer cellular uptake efficiency than that in free form by flow cytometry.Moreover,doxorubicin-loaded AlOOH nanosheets with high specific surface area showed an increased cellular uptake efficiency and enhanced ratios of apoptosis and necrosis,compared with those showing low specific surface area.Therefore,AlOOH nanosheets are promising materials as chemotherapy drug delivery system.