To experimentally match performance and structural features of an opposed-piston two- stroke engine ( OPTSE ), two calculation models, a one-dimensional ( 1-D ) model and a three-di- mensional (3-D) model, of th...To experimentally match performance and structural features of an opposed-piston two- stroke engine ( OPTSE ), two calculation models, a one-dimensional ( 1-D ) model and a three-di- mensional (3-D) model, of the combined charging matching simulation of an OPTSE was established by using the GT-Power software. To test and verify the one dimensional model, the three-dimension- al computational fluid dynamics simulation model was established using AVL FIRE software. Cylinder pressure curves in these two models match perfectly, showing that it is reasonable to use the one-di- mensional model to simulate the work process of an OPTSE. Moreover, the effects of delivery ratio, nozzle ring diameter and exhaust back pressure on brake specific fuel consumption ( BSFC ) were studied.展开更多
基金Supported by the National Natural Science Foundation of China(B2220110005)
文摘To experimentally match performance and structural features of an opposed-piston two- stroke engine ( OPTSE ), two calculation models, a one-dimensional ( 1-D ) model and a three-di- mensional (3-D) model, of the combined charging matching simulation of an OPTSE was established by using the GT-Power software. To test and verify the one dimensional model, the three-dimension- al computational fluid dynamics simulation model was established using AVL FIRE software. Cylinder pressure curves in these two models match perfectly, showing that it is reasonable to use the one-di- mensional model to simulate the work process of an OPTSE. Moreover, the effects of delivery ratio, nozzle ring diameter and exhaust back pressure on brake specific fuel consumption ( BSFC ) were studied.