期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Biomass-derived porous carbon materials for advanced lithium sulfur batteries 被引量:15
1
作者 Poting Liu Yunyi Wang Jiehua Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第7期171-185,共15页
Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical ... Biomass, as the most widely used carbon sources, is the main ingredient in the formation of fossil fuels. Biomass-derived novel carbons(BDNCs) have attracted much attention because of its adjustable physical/chemical properties, environmentally friendliness, and considerable economic value. Nature contributes to the biomass with bizarre microstructures with micropores, mesopores or hierarchical pores.Currently, it has been confirmed that biomass has great potential applications in energy storage devices,especially in lithium-sulfur(Li–S) batteries. In this article, the synthesis and function of BDNCs for Li–S batteries are presented, and the electrochemical effects of structural diversity, porosity and surface heteroatom doping of the carbons in Li-S batteries are discussed. In addition, the economic benefits, new trends and challenges are also proposed for further design excellent BDNCs for Li–S batteries. 展开更多
关键词 Biomass-derived CARBON materials Lithium-sulfur battery Porous CARBON Carbohydrate Cellulose
下载PDF
Advanced chemical strategies for lithium-sulfur batteries: A review 被引量:10
2
作者 Xiaojing Fan Wenwei Sun +2 位作者 Fancheng Meng Aiming Xing Jiehua Liu 《Green Energy & Environment》 SCIE 2018年第1期2-19,共18页
Lithium-sulfur(Li-S) battery has been considered as one of the most promising rechargeable batteries among various energy storage devices owing to the attractive ultrahigh theoretical capacity and low cost. However, t... Lithium-sulfur(Li-S) battery has been considered as one of the most promising rechargeable batteries among various energy storage devices owing to the attractive ultrahigh theoretical capacity and low cost. However, the performance of Li-S batteries is still far from theoretical prediction because of the inherent insulation of sulfur, shuttling of soluble polysulfides, swelling of cathode volume and the formation of lithium dendrites. Significant efforts have been made to trap polysulfides via physical strategies using carbon based materials, but the interactions between polysulfides and carbon are so weak that the device performance is limited. Chemical strategies provide the relatively complemented routes for improving the batteries' electrochemical properties by introducing strong interactions between functional groups and lithium polysulfides. Therefore, this review mainly discusses the recent advances in chemical absorption for improving the performance of Li-S batteries by introducing functional groups(oxygen, nitrogen, and boron, etc.) and chemical additives(metal, polymers, etc.) to the carbon structures, and how these foreign guests immobilize the dissolved polysulfides. 展开更多
关键词 Lithium-sulfur batteries Chemical reaction Lithium polysulfides Functional groups ADDITIVES
下载PDF
500-mW cm^(-2)underwater Zn-H_(2)O_(2)batteries with ultrafine edge-enriched electrocatalysts
3
作者 Meng Zhou Kui Fu +4 位作者 Yihai Xing Jianling Liu Fancheng Meng Xiangfeng Wei Jiehua Liu 《Science China Materials》 SCIE EI CAS CSCD 2024年第9期2908-2914,共7页
Aqueous metal-H_(2)O_(2)cells are emerging as power batteries because of their large theoretical energy densities and multiple application scenarios,especially in underwater environments.However,the peak power densiti... Aqueous metal-H_(2)O_(2)cells are emerging as power batteries because of their large theoretical energy densities and multiple application scenarios,especially in underwater environments.However,the peak power densities are less than 300 mW cm^(-2)for most reported metal-H_(2)O_(2)cells based on Mg/Al or their alloys due to the self-corrosion.Herein,we reported a Zn-H_(2)O_(2)cell with ultrafine bean-pod-like ZnCo/N-doped electrocatalysts that were synthesized via multifunctional single-cell-chain biomass.The electrocatalyst provides abundant active sites on the crinkly interface and offers a shortened pathway for electron/ion transfer due to the desired root-like carbon nanotube(CNT)arrays.Therefore,the optimized electrocatalyst exhibited outstanding oxygen reduction reaction(ORR)activity,with high E_(1/2)(0.90 V)and E_(onset)(1.01 V)values.More importantly,Zn-H_(2)O_(2)batteries achieve a record-breaking peak-power density of 510 mW cm^(-2)and a high specific energy density of 953 Wh kg^(-1). 展开更多
关键词 ELECTROCATALYST biomass oxygen reduction reaction Zn-air cell Zn-H_(2)O_(2)battery
原文传递
The strategies of advanced cathode composites for lithium-sulfur batteries 被引量:5
4
作者 ZHOU Kuan FAN XiaoJing +1 位作者 WEI XiangFeng LIU JieHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第2期175-185,共11页
Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical applicatio... Lithium-sulfur batteries have been widely nominated as one of the most promising next-generation electrochemical storage systems due to its low cost, high capacity and energy density. However, its practical application is still hindered by poor cycling lifetime, low Coulombic efficiency, instability and small scales. In the last decade, the electrochemical performances of the lithium-sulfur batteries have been improved by developing various novel nanoarchitectures as qualified hosts, and enhancing the sulfur loading with effective encapsulating strategies. The review summarizes the major sulfur cooperating strategies of cathodes based on background and latest progress of the lithium-sulfur batteries. The novel cooperating strategies of physical techniques and chemical synthesis techniques are discussed in detail. Based on the rich chemistry of sulfur, we paid more attention to the highlights of sulfur encapsulating strategies. Furthermore, the critical research directions in the coming future are proposed in the conclusion and outlook section. 展开更多
关键词 lithium-sulfur batteries cathode architecture melt-diffusion vapor-phase infiltration electrochemical performance
原文传递
Large-scale multirole Zn(Ⅱ) programmed synthesis of ultrathin hierarchically porous carbon nanosheets 被引量:2
5
作者 XU LingSong MENG FanCheng +3 位作者 WEI XiangFeng LIN ChangHao ZHENG LianXi LIU JicHua 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第9期1730-1738,共9页
ZIF-derived carbon structures are considered as desired electrode materials for supercapacitors due to their high surface area,high conductivity, and porous structure. However, the most reported ratio of 2-methylimida... ZIF-derived carbon structures are considered as desired electrode materials for supercapacitors due to their high surface area,high conductivity, and porous structure. However, the most reported ratio of 2-methylimidazole and Zn(II) is 4:1 to 20:1, which limits commercial applications due to the increasing cost. In this paper, a multirole Zn(II)-assisted method is presented from Zn(II) solution, Zn O, Zn O/ZIF-8 core-shell nanostructure, to 3 D hierarchical micro-meso-macroporous carbon structures with a1:1 ratio of 2-methylimidazole and Zn(II). The hierarchically porous carbon has a high surface area of 1800 m2 g^(-1) due to the synergistic effect of multirole Zn(II). The unique carbon-based half-cell delivers the specific capacitances of 377 and 221 F g^(-1) at the current densities of 1.0 and 50 A g^(-1), respectively. As a 2.5 V symmetrical supercapacitor, the device reveals a high doublelayer capacitance of 24.4 F g^(-1), a power density of 62.5 k W kg^(-1), and more than 85.8% capacitance can be retained over 10000 cycles at 10 A g^(-1). More importantly, the low-cost hierarchically porous carbon could be easily produced on a large scale and almost all chemicals can be reused in the sustainable method. 展开更多
关键词 multirole Zn(Ⅱ) hierarchically porous carbon N doping carbon nanosheets SUPERCAPACITOR
原文传递
Recent advances in electrocatalysts for non-aqueous Li-O2 batteries 被引量:3
6
作者 Wei Chen Ya-Feng Gong Jie-Hua Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期709-718,共10页
As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structur... As one of the next-generation energy-storage devices,Li-O_2 battery has become the main research direction for the academic researchers due to its characteristics of environmental friendship,relatively simple structures,high energy density of 3500Wh/kg and low cost.However,Li-O_2 battery cannot be commercialized on a large scale because of the challenging issues including high-efficient electrocatalysts,membranes,Li-based anode and so on.In this review,we focused on the recent development of electrocatalyst materials as cathodes for the non-aqueous Li-O_2 batteries which are relatively simpler than other Li-O_2 batteries' structures.Electrocatalysts were summarized including noble metals,nanocarbon materials,transition metals and their hybrids.We points out that the challenges of preparation high-efficient catalysts not only require high catalytic activity and conductivity,but also have novel nanoarchitectures with large interface and porous volume for LiO_x storage.Furthermore,the further investigation of reaction mechanism and advanced in situ analysis technologies are welcome in the coming work. 展开更多
关键词 Electric vehicle Li-O2 battery High capacity Catalysts Electrocatalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部