期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A Generalization of Eneström-Kakeya Theorem and a Zero Free Region of a Polynomial
1
作者 Mushtaq Ahmad Shah Ram Swroop +1 位作者 Humayun Mohd Sofi Insha Nisar 《Journal of Applied Mathematics and Physics》 2021年第6期1271-1277,共7页
For the polynomial <em>P</em> (<em>z</em>) = <img src="Edit_94d094e0-dc15-4e21-b6cf-3fcb179d54b0.bmp" alt="" /><em>a<sub>j</sub>z<sup>j</sup... For the polynomial <em>P</em> (<em>z</em>) = <img src="Edit_94d094e0-dc15-4e21-b6cf-3fcb179d54b0.bmp" alt="" /><em>a<sub>j</sub>z<sup>j</sup></em>, <em>a</em><sub><em>j </em></sub>≥ <em>a</em><sub><em>j</em>-1</sub>, <em>a</em><sub>0</sub> > 0, <em>j</em> = 1, 2, …, <em>n</em>, <em>a<sub>n</sub></em> > 0, a classical result of Enestr<span style="white-space:nowrap;"><span style="white-space:nowrap;">&#246;</span></span>m-Kakeya says that all the zeros of <em>P</em> (<em>z</em>) lie in |<em>z</em>|≤ 1. This result was generalised by A. Joyall and G. Labelle, where they relaxed the non-negativity condition on coefficients. It was further generalized by M.A Shah by relaxing the monotonicity of some coefficients. In this paper, we use some known techniques and provide some more generalizations of the above results by giving more relaxation to the conditions. 展开更多
关键词 POLYNOMIAL ZEROS Eneström-Kakeya Theorem
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部