Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most ef...Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations.The Environmental Trace Gases Monitoring Instrument(EMI)deployed on the Gaofen-5 satellite is the first Chinese ultraviolet-visible hyperspectral spectrometer.However,retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio.The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87%of the EMI pixels.Therefore,we developed an algorithm specific to the characteristics of the EMI.The fitting residuals are smaller than 0.3%in most regions.The retrieved ozone profiles were in good agreement with ozonesonde data,with maximum mean biases of 20%at five latitude bands.By applying EMI averaging kernels to the ozonesonde profiles,the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data,The lower layers(0-7.5 km)of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center(CNEMC).However,the upper layers(9.7-16.7 km)of the ozone profiles show different trends,with the ozone peak occurring at an altitude of 9.7-16.7 km in March,2019.A stratospheric intrusion event in central China from August 11 to 15,2019,is captured using the EMI ozone profiles,potential vorticity data,and relative humidity data.The increase in the CNEMC ozone co ncentration showed that downward transport enhanced surface ozone pollution.展开更多
We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with...We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
With the increasing demand for terahertz(THz)technology in security inspection,medical imaging,and flexible electronics,there is a significant need for stretchable and transparent THz electromagnetic interference(EMI)...With the increasing demand for terahertz(THz)technology in security inspection,medical imaging,and flexible electronics,there is a significant need for stretchable and transparent THz electromagnetic interference(EMI)shielding materials.Existing EMI shielding materials,like opaque metals and carbon-based films,face challenges in achieving both high transparency and high shielding efficiency(SE).Here,a wrinkled structure strategy was proposed to construct ultra-thin,stretchable,and transparent terahertz shielding MXene films,which possesses both isotropous wrinkles(height about 50 nm)and periodic wrinkles(height about 500 nm).Compared to flat film,the wrinkled MXene film(8 nm)demonstrates a remarkable 36.5%increase in SE within the THz band.The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm,and an average EMI SE/t of 700 dBμm^(−1)over the 0.1-10 THz.Theoretical calculations suggest that the wrinkled structure enhances the film’s conductivity and surface plasmon resonances,resulting in an improved THz wave absorption.Additionally,the wrinkled structure enhances the MXene films’stretchability and stability.After bending and stretching(at 30%strain)cycles,the average THz transmittance of the wrinkled film is only 0.5%and 2.4%,respectively.The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.展开更多
体外膜氧合(extracorporeal membrane oxygenation,ECMO)作为体外生命支持(extracorporeal life support,ECLS)技术的一种,用于部分或完全替代患者心肺功能,目前已得到广泛应用。在该产品的研发过程中,由于血液保存时间限制等原因,需要...体外膜氧合(extracorporeal membrane oxygenation,ECMO)作为体外生命支持(extracorporeal life support,ECLS)技术的一种,用于部分或完全替代患者心肺功能,目前已得到广泛应用。在该产品的研发过程中,由于血液保存时间限制等原因,需要通过动物试验进行必要的产品性能验证和安全性评估,为临床试验设计提供参考,也可进一步降低临床试验受试者及使用者的风险。为此本文参考相关监管机构发布的体外膜氧合产品动物试验研究的指南性文件、临床及非临床文献、临床操作共识等资料,给出针对ECMO产品进行动物试验研究的要点,以期为相关产品的开发、研制等提供参考。在对ECMO产品性能进行动物试验研究时,要考虑动物种类及模型、对照产品的选择、评价指标的选择、观察时间、样本量、操作要求等。对ECMO产品进行规范、科学、合理的动物试验验证可以通过尽可能少的成本获得更高质量的证据,更好地促进相关产品研制。展开更多
Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution rea...Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution reaction(HER)and hydrogen oxidation reaction(HOR).In this paper,an oxygen insertion strategy was applied on nickel to regulate its hydrogen electrocatalytic performance,and the oxygen-inserted nickel catalyst was successfully obtained with the assistance of tungsten dioxide support(denoted as O-Ni/WO_(2)).The partial insertion of oxygen in Ni maintains the face-centered cubic arrangement of Ni atoms,simultaneously expanding the lattice and increasing the lattice spacing.Consequently,the adsorption strength of^(*)H and^(*)OH on Ni is optimized,thus resulting in superior electrocatalytic performance of0-Ni/WO_(2)in alkaline HER/HOR.The Tafel slope of O-Ni/WO_(2)@NF for HER is 56 mV dec^(-1),and the kinetic current density of O-Ni/WO_(2)for HOR reaches 4.85 mA cm^(-2),which is ahead of most currently reported catalysts.Our proposed strategy of inserting an appropriate amount of anions into the metal lattice could provide more possibilities for the design of high-performance catalysts.展开更多
基金supported by the National Natural Science Foundation of China(42225504 and 41977184)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23020301)+3 种基金the Key Research and Development Project of Anhui Province(202104i07020002)the Major Projects of High Resolution Earth Observation Systems of National Science and Technology(05-Y30B01-9001-19/20-3)the Key Laboratory of Atmospheric Chemistry/China Meteorological Administration(LAC/CMA)(2022B06)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2021443).
文摘Understanding the vertical distribution of ozone is crucial when assessing both its horizontal and vertical transport,as well as when analyzing the physical and chemical properties of the atmosphere.One of the most effective ways to obtain high spatial resolution ozone profiles is through satellite observations.The Environmental Trace Gases Monitoring Instrument(EMI)deployed on the Gaofen-5 satellite is the first Chinese ultraviolet-visible hyperspectral spectrometer.However,retrieving ozone profiles using backscattered radiance values measured by the EMI is challenging due to unavailable measurement errors and a low signal-to-noise ratio.The algorithm developed for the Tropospheric Monitoring Instrument did not allow us to retrieve 87%of the EMI pixels.Therefore,we developed an algorithm specific to the characteristics of the EMI.The fitting residuals are smaller than 0.3%in most regions.The retrieved ozone profiles were in good agreement with ozonesonde data,with maximum mean biases of 20%at five latitude bands.By applying EMI averaging kernels to the ozonesonde profiles,the integrated stratospheric column ozone and tropospheric column ozone also showed excellent agreement with ozonesonde data,The lower layers(0-7.5 km)of the EMI ozone profiles reflected the seasonal variation in surface ozone derived from the China National Environmental Monitoring Center(CNEMC).However,the upper layers(9.7-16.7 km)of the ozone profiles show different trends,with the ozone peak occurring at an altitude of 9.7-16.7 km in March,2019.A stratospheric intrusion event in central China from August 11 to 15,2019,is captured using the EMI ozone profiles,potential vorticity data,and relative humidity data.The increase in the CNEMC ozone co ncentration showed that downward transport enhanced surface ozone pollution.
基金the National Natural Sci-ence Foundation of China(Grant No.61988102)the Key Research and Development Program of Guangdong Province(Grant No.2019B090917007)+5 种基金the Science and Technology Planning Project of Guangdong Province(Grant No.2019B090909011)Q.L.acknowledges Guangzhou Basic and Applied Basic Research Project(Grant No.2023A04J0018)Z.L.acknowledges the support of fund-ing from Chinese Academy of Sciences E1Z1D10200 and E2Z2D10200from ZJ project 2021QN02X159 and from JSPS(Grant Nos.PE14052 and P16027)We gratefully ac-knowledge HZWTECH for providing computation facilities.Z.-X.H.was supported by the National Natural Science Foun-dation of China(Grant Nos.11974064 and 12147102)the Fundamental Research Funds for the Central Universities(Grant No.2020CDJQY-Z003).
文摘We develop a numerical method for the time evolution of Gaussian wave packets on flat-band lattices in the presence of correlated disorder.To achieve this,we introduce a method to generate random on-site energies with prescribed correlations.We verify this method with a one-dimensional(1D)cross-stitch model,and find good agreement with analytical results obtained from the disorder-dressed evolution equations.This allows us to reproduce previous findings,that disorder can mobilize 1D flat-band states which would otherwise remain localized.As explained by the corresponding disorder-dressed evolution equations,such mobilization requires an asymmetric disorder-induced coupling to dispersive bands,a condition that is generically not fulfilled when the flat-band is resonant with the dispersive bands at a Dirac point-like crossing.We exemplify this with the 1D Lieb lattice.While analytical expressions are not available for the two-dimensional(2D)system due to its complexity,we extend the numerical method to the 2D a–T3 model,and find that the initial flat-band wave packet preserves its localization when a=0,regardless of disorder and intersections.However,when a̸=0,the wave packet shifts in real space.We interpret this as a Berry phase controlled,disorder-induced wave-packet mobilization.In addition,we present density functional theory calculations of candidate materials,specifically Hg1−xCdxTe.The flat-band emerges near the G point(α=0)in the Brillouin zone.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant nos.52371247,91963205,62101352,61988102 and 12274424)the National Key Research and Development Program of China(Grant nos.2019YFA0210200,2019YFA0210203,2022YFA1203500,and 2022YFA1206600).
文摘With the increasing demand for terahertz(THz)technology in security inspection,medical imaging,and flexible electronics,there is a significant need for stretchable and transparent THz electromagnetic interference(EMI)shielding materials.Existing EMI shielding materials,like opaque metals and carbon-based films,face challenges in achieving both high transparency and high shielding efficiency(SE).Here,a wrinkled structure strategy was proposed to construct ultra-thin,stretchable,and transparent terahertz shielding MXene films,which possesses both isotropous wrinkles(height about 50 nm)and periodic wrinkles(height about 500 nm).Compared to flat film,the wrinkled MXene film(8 nm)demonstrates a remarkable 36.5%increase in SE within the THz band.The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm,and an average EMI SE/t of 700 dBμm^(−1)over the 0.1-10 THz.Theoretical calculations suggest that the wrinkled structure enhances the film’s conductivity and surface plasmon resonances,resulting in an improved THz wave absorption.Additionally,the wrinkled structure enhances the MXene films’stretchability and stability.After bending and stretching(at 30%strain)cycles,the average THz transmittance of the wrinkled film is only 0.5%and 2.4%,respectively.The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.
文摘体外膜氧合(extracorporeal membrane oxygenation,ECMO)作为体外生命支持(extracorporeal life support,ECLS)技术的一种,用于部分或完全替代患者心肺功能,目前已得到广泛应用。在该产品的研发过程中,由于血液保存时间限制等原因,需要通过动物试验进行必要的产品性能验证和安全性评估,为临床试验设计提供参考,也可进一步降低临床试验受试者及使用者的风险。为此本文参考相关监管机构发布的体外膜氧合产品动物试验研究的指南性文件、临床及非临床文献、临床操作共识等资料,给出针对ECMO产品进行动物试验研究的要点,以期为相关产品的开发、研制等提供参考。在对ECMO产品性能进行动物试验研究时,要考虑动物种类及模型、对照产品的选择、评价指标的选择、观察时间、样本量、操作要求等。对ECMO产品进行规范、科学、合理的动物试验验证可以通过尽可能少的成本获得更高质量的证据,更好地促进相关产品研制。
基金financially supported by National Natural Science Foundation of China(No.22209049,22075102,22005120)Natural Science Foundation of Guangdong Province(No.2023A1515012804)Fundamental Research Funds for the Central Universities(No.2022ZYGXZR048)。
文摘Nickel-based materials,including metallic Ni and Ni oxide,have been widely studied in the exploration of non-precious-metal hydrogen electrocatalysts,but neither pure Ni nor NiO is ideal for the hydrogen evolution reaction(HER)and hydrogen oxidation reaction(HOR).In this paper,an oxygen insertion strategy was applied on nickel to regulate its hydrogen electrocatalytic performance,and the oxygen-inserted nickel catalyst was successfully obtained with the assistance of tungsten dioxide support(denoted as O-Ni/WO_(2)).The partial insertion of oxygen in Ni maintains the face-centered cubic arrangement of Ni atoms,simultaneously expanding the lattice and increasing the lattice spacing.Consequently,the adsorption strength of^(*)H and^(*)OH on Ni is optimized,thus resulting in superior electrocatalytic performance of0-Ni/WO_(2)in alkaline HER/HOR.The Tafel slope of O-Ni/WO_(2)@NF for HER is 56 mV dec^(-1),and the kinetic current density of O-Ni/WO_(2)for HOR reaches 4.85 mA cm^(-2),which is ahead of most currently reported catalysts.Our proposed strategy of inserting an appropriate amount of anions into the metal lattice could provide more possibilities for the design of high-performance catalysts.