The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled...The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.展开更多
The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuo...The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.展开更多
Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous...Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.展开更多
The occurrence of moissanite(SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is...The occurrence of moissanite(SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is stable only at fO2< △IW-6, while the lithospheric mantle and related melts commonly are considered to be much more oxidized. SiC grains from both basaltic volcanoclastic rocks and kimberlites contain metallic inclusions whose shapes suggest they were entrapped as melts. The inclusions consist of Si^0+ Fe3Si7± FeSi2 Ti ± CaSi2Al2± FeSi2Al3± CaSi2, and some of the phases show euhedral shapes toward Si^0. Crystallographically-oriented cavities are common in SiC, suggesting the former presence of volatile phase(s), and the volatiles extracted from crushed SiC grains contain H2+ CH4± CO2± CO.Our observations suggest that SiC crystalized from metallic melts(Si-Fe-Ti-C ± Al ± Ca), with dissolved H2+ CH4± CO2± CO derived from the sublithospheric mantle and concentrated around interfaces such as the lithosphere-asthenosphere and crust-mantle boundaries. When mafic/ultramafic magmas are continuously fluxed with H2+ CH4 they can be progressively reduced, to a point where silicide melts become immiscible, and crystallize phases such as SiC. The occurrence of SiC in explosive volcanic rocks from different tectonic settings indicates that the delivery of H2+ CH4 from depth may commonly accompany explosive volcanism and modify the redox condition of some lithospheric mantle volumes. The heterogeneity of redox states further influences geochemical reactions such as melting and geophysical properties such as seismic velocity and the viscosity of mantle rocks.展开更多
基金provided by the National Key Research and Development Program of China "Deep Structure and Ore-forming Process of Main Mineralization System in Tibetan Orogen"(2016YFC0600300)the National Basic Research Program of China (2011CB403104)+1 种基金the China Geological Survey (12120113037901)the National Natural Science Foundation of China(41320104004) and(41503040)
文摘The Nianzha gold deposit, located in the central section of the Indus-Yarlung Tsangpo suture (IYS) zone in southern Tibet, is a large gold deposit (Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision (-65-41 Ma). The main orebody is 1760 m long and 5.15 m thick, and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south. High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange. The wall-rock alteration is characterized by silicification in the fracture zone, serpentinization and the formation of talc and magnesite in the uitramafic unit, and chloritization and the formation of epidote and calcite in diorite. Quartz veins associated with Au mineralization can be divided into three stages. Fluid inclusion data indicate that the deposit formed from H20-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt% NaCI equivalent. The quartz veins yield δ18Ofluid values of 0.15‰-10.45‰, low δDv-SMow values (-173%o to -96%o), and the δ13C values of-17.6‰ to -4.7‰, indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids. The pyrite within the diorite has δ34SV-CDT values of -2.9‰-1.9‰(average -1.1‰), 206pb/204pb values of 18.47- 18.64, 207pb/204pb values of 15.64-15.74, and 208pb/204pb values of 38.71-39.27, all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle. The presence of the Nianzha, Bangbu, and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits. We identified three types of mineralization within the IYS, namely Bangbu-type accretionary, Mayum-type microcontinent, and Nianzha-type ophiolite-associated orogenic Au deposits. The three types formed at different depths in an aeeretionary orogenic tectonic setting. The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.
基金This paper is supported by the Research Foundation for OutstandingYoung Teachers , China University of Geosciences ( Wuhan )(CUGQNL0510)the National Natural Science Foundation of China(No .40425002) .
文摘The compositions of the whole rocks and trace elements of minerals in peridotites can reflect the characteristics of the lithospheric mantle. The nature and evolution of the Cenozoic lithospheric mantle beneath Hannuoba (汉诺坝), located on the north edge of the intra-North China orogenic belt, are discussed based on the in-situ LAM-ICPMS detected trace element compositions of clinopyroxenes in the Hannuoba peridotitic xenoliths combined with detailed petrography and geochemistry studies. The Hannuoba lithospheric mantle was formed by different partial meltings of the primitive mantle. Most of the samples reflect the partial melting degree of lower than 5% with a few samples of 15%-20%. Major element compositions of the whole rocks and geochemical compositions of clinopyroxenes reveal the coexistence of both fertile and depleted mantle underneath the Hannuoba region during the Cenozoic. This was probably caused by the asthenospheric mantle replacing the aged craton mantle through erosion, intermingling and modification. Our conclusion is further supported by the existence of both carbonatitic magmatic material and silicate melt/ fluid metasomatism as magnified by the trace elements of the clinopyroxencs from the Hannuoba lithospherJc mantle.
基金supported by National Natural Science Foundation of China (Grant Nos.41074052,41174086,40974034)Key project from Institute of Geodesy and Geophysics,Chinese Academy of Sciences,and Foundation for Innovative Research Groups of the National Science Foundation of China (Grant No.41021003)
文摘Following the M w 7.9 Wenchuan earthquake, the M w 6.6 Lushan earthquake is another devastating earthquake that struck the Longmenshan Fault Zone (LFZ) and caused severe damages. In this study, we collected continuous broadband ambient noise seismic data and earthquake event data from Chinese provincial digital seismic network, and then utilized ambient noise tomography method and receiver function method to obtain high resolution shear wave velocity structure, crustal thickness, and Poisson ratio in the earthquake source region and its surroundings. Based on the tomography images and the receiver function results, we further analyzed the deep seismogenic environment of the LFZ and its neighborhood. We reveal three main findings: (1) There is big contrast of the shear wave velocities across the LFZ. (2) Both the Lushan earthquake and the Wenchuan earthquake occurred in the regions where crustal shear wave velocity and crustal thickness change dramatically. The rupture faults and the aftershock zones are also concentrated in the areas where the lateral gradients of crustal seismic wave speed and crustal thickness change significantly, and the focal depths of the earthquakes are concentrated in the transitional depths where shear wave velocities change dramatically from laterally uniform to laterally non-uniform. (3) The Wenchuan earthquake and its aftershocks occurred in low Poisson ratio region, while the Lushan earthquake sequences are located in high Poisson ratio zone. We proposed that the effect of the dramatic lateral variation of shear wave velocity, and the gravity potential energy differences caused by the big contrast in the topography and the crustal thickness across the LFZ may constitute the seismogenic environment for the strong earthquakes in the LFZ, and the Poisson ratio difference between the rocks in the south and north segments of the Longmenshan Fault zone may explain the 5 years delay of the occurrence of the Lushan earthquake than the Wenchuan earthquake.
基金supported by grants from the ARC Centre of Excellence for Core to Crust Fluid Systems。
文摘The occurrence of moissanite(SiC), as xenocrysts in mantle-derived basaltic and kimberlitic rocks sheds light on the interplay between carbon, hydrogen and oxygen in the lithospheric and sublithospheric mantle. SiC is stable only at fO2< △IW-6, while the lithospheric mantle and related melts commonly are considered to be much more oxidized. SiC grains from both basaltic volcanoclastic rocks and kimberlites contain metallic inclusions whose shapes suggest they were entrapped as melts. The inclusions consist of Si^0+ Fe3Si7± FeSi2 Ti ± CaSi2Al2± FeSi2Al3± CaSi2, and some of the phases show euhedral shapes toward Si^0. Crystallographically-oriented cavities are common in SiC, suggesting the former presence of volatile phase(s), and the volatiles extracted from crushed SiC grains contain H2+ CH4± CO2± CO.Our observations suggest that SiC crystalized from metallic melts(Si-Fe-Ti-C ± Al ± Ca), with dissolved H2+ CH4± CO2± CO derived from the sublithospheric mantle and concentrated around interfaces such as the lithosphere-asthenosphere and crust-mantle boundaries. When mafic/ultramafic magmas are continuously fluxed with H2+ CH4 they can be progressively reduced, to a point where silicide melts become immiscible, and crystallize phases such as SiC. The occurrence of SiC in explosive volcanic rocks from different tectonic settings indicates that the delivery of H2+ CH4 from depth may commonly accompany explosive volcanism and modify the redox condition of some lithospheric mantle volumes. The heterogeneity of redox states further influences geochemical reactions such as melting and geophysical properties such as seismic velocity and the viscosity of mantle rocks.