We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minko...We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minkowski geometry. In , local Lorentz invariance is naturally violated, due to the energy dependence of the deformed metric. Moreover, the generalized Lagrange structure of allows one to endow the deformed space-time with both curvature and torsion.展开更多
In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source;a TRI...In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source;a TRIGA type nuclear reactor;and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.展开更多
文摘We discuss the generalized Lagrange structure of a deformed Minkowski space (DMS), , namely a (four-dimensional) generalization of the (local) space-time based on an energy-dependent “deformation” of the usual Minkowski geometry. In , local Lorentz invariance is naturally violated, due to the energy dependence of the deformed metric. Moreover, the generalized Lagrange structure of allows one to endow the deformed space-time with both curvature and torsion.
文摘In this paper a new type of passive neutron detector based on the already existing one, CR39, is described. Its operation was verified by three different neutron sources: an Americium-Beryllium (Am241-Be) source;a TRIGA type nuclear reactor;and a fast neutron reactor called TAPIRO. The obtained results, reported here, positively confirm its operation and the accountability of the new developed detecting technique.