This paper deals with the inaccuracy assessment of the friction pressure loss estimation based on Darcy formula combined with an equivalent hydraulic diameter and a friction factor valid for circular pipes when applie...This paper deals with the inaccuracy assessment of the friction pressure loss estimation based on Darcy formula combined with an equivalent hydraulic diameter and a friction factor valid for circular pipes when applied to a square rod bundle. The assessment has been done by comparing the analytical and semi-empirical predictions with two different CFD codes results: CFX and NEPTUNE_CFD. Two different analytical approaches have been considered: the whole-bundle and sub-channel approaches, both for laminar and turbulent flow conditions. Looking at results, it is reasonable to assume that an error in the range of 11% - 23% is likely when using equivalent diameter in the laminar regime. In the case of turbulent regime, the equivalent diameter works better and the error is in the range between a few percent and ~12%.展开更多
文摘This paper deals with the inaccuracy assessment of the friction pressure loss estimation based on Darcy formula combined with an equivalent hydraulic diameter and a friction factor valid for circular pipes when applied to a square rod bundle. The assessment has been done by comparing the analytical and semi-empirical predictions with two different CFD codes results: CFX and NEPTUNE_CFD. Two different analytical approaches have been considered: the whole-bundle and sub-channel approaches, both for laminar and turbulent flow conditions. Looking at results, it is reasonable to assume that an error in the range of 11% - 23% is likely when using equivalent diameter in the laminar regime. In the case of turbulent regime, the equivalent diameter works better and the error is in the range between a few percent and ~12%.