The main reason why the application of nuclear technology in petroleum exploration has not yet been accepted by most exploration workers is that they are not clear about the homologous distribution features of oil and...The main reason why the application of nuclear technology in petroleum exploration has not yet been accepted by most exploration workers is that they are not clear about the homologous distribution features of oil and gas fields and radioactive radiation. The authors hold that the disequilibrium of uranium, radium and radon as a natural radioactive series is the basic feature in the use of this technology in petroleum exploration. The invention Gamma-ray Spectral Measurement of the Equilibium Coefficient Kp and Its Embodiment of the senior author now can readily solve that problem and replace the impedient measure of normalization of uranium and potassium to thorium that had to be proposed before. Application of this impedient measure has some limitations. In areas where the surface is covered by beach or river sands, thorium minerals such as monazite may be concentrated by placering. This could result in local thorium highs that would yield local uranium and potassium lows after normalization to thorium, and these would constitute false anomalies.展开更多
Dense gas-solid flows show significantly higher stresses compared with dilute flows, mainly attributable to particle-particle friction in dense particle flows. Several models developed have considered particle-particl...Dense gas-solid flows show significantly higher stresses compared with dilute flows, mainly attributable to particle-particle friction in dense particle flows. Several models developed have considered particle-particle friction; however, they generally underestimate its effect in dense regions of the gas-solid system, leading to unrealistic predictions in their flow patterns. Recently, several attempts have been made to formulate such flows and the impact of particle-particle friction on predicting flow patterns based on modified frictional viscosity models by including effects of bulk density changes on frictional pressure of the solid phase. The solid-wall boundary is also expected to have considerable effect on friction because particulate phases generally slip over the solid surface that directly affects particle-particle frictional forces. Polydispersity of the solid phase also leads to higher friction between particles as more particles have sustained contact in polydispersed systems. Their effects were investi- gated by performing CFD simulations of particle settlement to calculate the slope angle of resting material of non-cohesive particles as they settle on a solid surface. This slope angle is directly affected by frictional forces and may be a reasonably good measure of frictional forces between particles. The calculated slope angle, as a measure of frictional forces inside the system are compared with experimental values of this slope angle as well as simulation results from the literature.展开更多
文摘The main reason why the application of nuclear technology in petroleum exploration has not yet been accepted by most exploration workers is that they are not clear about the homologous distribution features of oil and gas fields and radioactive radiation. The authors hold that the disequilibrium of uranium, radium and radon as a natural radioactive series is the basic feature in the use of this technology in petroleum exploration. The invention Gamma-ray Spectral Measurement of the Equilibium Coefficient Kp and Its Embodiment of the senior author now can readily solve that problem and replace the impedient measure of normalization of uranium and potassium to thorium that had to be proposed before. Application of this impedient measure has some limitations. In areas where the surface is covered by beach or river sands, thorium minerals such as monazite may be concentrated by placering. This could result in local thorium highs that would yield local uranium and potassium lows after normalization to thorium, and these would constitute false anomalies.
文摘Dense gas-solid flows show significantly higher stresses compared with dilute flows, mainly attributable to particle-particle friction in dense particle flows. Several models developed have considered particle-particle friction; however, they generally underestimate its effect in dense regions of the gas-solid system, leading to unrealistic predictions in their flow patterns. Recently, several attempts have been made to formulate such flows and the impact of particle-particle friction on predicting flow patterns based on modified frictional viscosity models by including effects of bulk density changes on frictional pressure of the solid phase. The solid-wall boundary is also expected to have considerable effect on friction because particulate phases generally slip over the solid surface that directly affects particle-particle frictional forces. Polydispersity of the solid phase also leads to higher friction between particles as more particles have sustained contact in polydispersed systems. Their effects were investi- gated by performing CFD simulations of particle settlement to calculate the slope angle of resting material of non-cohesive particles as they settle on a solid surface. This slope angle is directly affected by frictional forces and may be a reasonably good measure of frictional forces between particles. The calculated slope angle, as a measure of frictional forces inside the system are compared with experimental values of this slope angle as well as simulation results from the literature.