Fragments of DNA present in food and feed are taken up by the gastrointestinal tract (GIT) of mammals. The extent of uptake varies according to organism, study design and DNA source. This study explores the hypothesis...Fragments of DNA present in food and feed are taken up by the gastrointestinal tract (GIT) of mammals. The extent of uptake varies according to organism, study design and DNA source. This study explores the hypothesis that actively growing, as well as pregnant rats, are more likely to take up DNA from the GIT than mature animals due to the high demand for nutrients for tissue and organ development. Plasmid DNA (pDNA) was added to standard feed for growing, and pregnant rats. The young rats received one pDNA (50 μg) containing meal by gavage. Blood, organ and tissue samples were harvested at 2 h to 3 days post feeding (p.f). The pregnant females were fed pellets containing pDNA (100 μg) daily, starting at day 5 after established pregnancy. Females and foeti were killed at days 7 and 14 of gestation, and pups at the time of weaning. Genomic DNA was analyzed by PCR followed by Southern blot and real-time PCR. A 201 bp target sequence was detected in mesenteric lymph nodes, spleen, liver and pancreas from growing rats 2 h p.f. At 6 h, target DNA was detectable in the kidneys, and at three days p.f. in the liver. Target DNA was not detected in samples from pregnant rats, their foeti or pups. In conclusion, low level of feed introduced DNA could be transiently detected in organs of young, growing rats. However, indications of increased DNA uptake levels in the GIT of growing rats were not found.展开更多
基金The work was funded by the Research Council of Norway(148704).
文摘Fragments of DNA present in food and feed are taken up by the gastrointestinal tract (GIT) of mammals. The extent of uptake varies according to organism, study design and DNA source. This study explores the hypothesis that actively growing, as well as pregnant rats, are more likely to take up DNA from the GIT than mature animals due to the high demand for nutrients for tissue and organ development. Plasmid DNA (pDNA) was added to standard feed for growing, and pregnant rats. The young rats received one pDNA (50 μg) containing meal by gavage. Blood, organ and tissue samples were harvested at 2 h to 3 days post feeding (p.f). The pregnant females were fed pellets containing pDNA (100 μg) daily, starting at day 5 after established pregnancy. Females and foeti were killed at days 7 and 14 of gestation, and pups at the time of weaning. Genomic DNA was analyzed by PCR followed by Southern blot and real-time PCR. A 201 bp target sequence was detected in mesenteric lymph nodes, spleen, liver and pancreas from growing rats 2 h p.f. At 6 h, target DNA was detectable in the kidneys, and at three days p.f. in the liver. Target DNA was not detected in samples from pregnant rats, their foeti or pups. In conclusion, low level of feed introduced DNA could be transiently detected in organs of young, growing rats. However, indications of increased DNA uptake levels in the GIT of growing rats were not found.