期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Thermal behavior analysis of a pouch type Li[Ni0.7Co0.15Mn0.15]O2-based lithium-ion battery 被引量:6
1
作者 Feng-Ling Yun Ling Tang +3 位作者 Wen-Cheng Li Wei-Ren Jin Jing Pang Shi-Gang Lu 《Rare Metals》 SCIE EI CAS CSCD 2016年第4期309-319,共11页
Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the de... Since lithium-ion battery with high energy density is the key component for next-generation electrical vehicles, a full understanding of its thermal behaviors at different discharge rates is quite important for the design and thermal management of lithium-ion batteries (LIBs) pack/module. In this work, a 25 Ah pouch type Li[Ni0.7 Co0.15Mn0.15]O2/graphite LIBs with specific energy of 200 Wh.kg-1 were designed to investigate their thermal behaviors, including temperature distribution, heat generation rate, heat capacity and heat transfer coefficient with environment. Results show that the temperature increment of the charged pouch batteries strongly depends on the discharge rate and depth of discharge. The heat generation rate is mainly influenced by the irreversible heat effect, while the reversible heat is important at all discharge rates and contributes much to the middle evolution of the tem- perature during discharge, especially at low rate. Subse- quently, a prediction model with lumped parameters was used to estimate the temperature evolution at different discharge rates of LIBs. The predicted results match well with the experimental results at all discharge rates. Therefore, the thermal model is suitable to predict the average temperature for the large-scale batteries under normal operating conditions. 展开更多
关键词 Lithium-ionLi[Ni0.7Co0.15Mn0.15]O2 battery Thermal behavior High specific energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部